Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Theor Appl Genet ; 136(3): 38, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897431

RESUMO

KEY MESSAGE: rAMP-seq based genomic selection for agronomic traits has been shown to be a useful tool for winter wheat breeding programs by increasing the rate of genetic gain. Genomic selection (GS) is an effective strategy to employ in a breeding program that focuses on optimizing quantitative traits, which results in the ability for breeders to select the best genotypes. GS was incorporated into a breeding program to determine the potential for implementation on an annual basis, with emphasis on selecting optimal parents and decreasing the time and costs associated with phenotyping large numbers of genotypes. The design options for applying repeat amplification sequencing (rAMP-seq) in bread wheat were explored, and a low-cost single primer pair strategy was implemented. A total of 1870 winter wheat genotypes were phenotyped and genotyped using rAMP-seq. The optimization of training to testing population size showed that the 70:30 ratio provided the most consistent prediction accuracy. Three GS models were tested, rrBLUP, RKHS and feed-forward neural networks using the University of Guelph Winter Wheat Breeding Program (UGWWBP) and Elite-UGWWBP populations. The models performed equally well for both populations and did not differ in prediction accuracy (r) for most agronomic traits, with the exception of yield, where RKHS performed the best with an r = 0.34 and 0.39 for each population, respectively. The ability to operate a breeding program where multiple selection strategies, including GS, are utilized will lead to higher efficiency in the program and ultimately lead to a higher rate of genetic gain.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Fenótipo , Genótipo , Genômica/métodos , Seleção Genética , Modelos Genéticos
2.
Proc Natl Acad Sci U S A ; 116(40): 20002-20008, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527251

RESUMO

Global warming has been documented to threaten wild plants with strong selection pressures, but how plant populations respond genetically to the threats remains poorly understood. We characterized the genetic responses of 10 wild emmer wheat (Triticum dicoccoides Koern.; WEW) populations in Israel, sampling them in 1980 and again in 2008, through an exome capture analysis. It was found that these WEW populations were under elevated selection, displayed reduced diversity and temporal divergence, and carried increased mutational burdens forward. However, some populations still showed the ability to acquire beneficial alleles via selection or de novo mutation for future adaptation. Grouping populations with mean annual rainfall and temperature revealed significant differences in most of the 14 genetic estimates in either sampling year or over the 28 y. The patterns of genetic response to rainfall and temperature varied and were complex. In general, temperature groups displayed more temporal differences in genetic response than rainfall groups. The highest temperature group had more deleterious single nucleotide polymorphisms (dSNPs), higher nucleotide diversity, fewer selective sweeps, lower differentiation, and lower mutational burden. The least rainfall group had more dSNPs, higher nucleotide diversity, lower differentiation and higher mutational burden. These characterized genetic responses are significant, allowing not only for better understanding of evolutionary changes in the threatened populations, but also for realistic modeling of plant population adaptability and vulnerability to global warming.


Assuntos
Biodiversidade , Análise Mutacional de DNA , Genes de Plantas , Aquecimento Global , Mutação , Triticum/genética , Alelos , Evolução Biológica , Clima , Exoma , Genética Populacional , Genômica , Israel , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Temperatura
3.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805968

RESUMO

Scientists agree that the increased human impact on the environment since the 19th century has positioned our planet in a period of rapid and intense change, particularly to our natural ecosystems [...].


Assuntos
Ecossistema , Melhoramento Vegetal , Genômica , Humanos , Plantas/genética
4.
New Phytol ; 225(1): 340-355, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469444

RESUMO

Awns, bristle-like structures extending from grass lemmas, provide protection against predators, contribute to photosynthesis and aid in grain dispersal. In wheat, selection of awns with minimal extension, termed awnletted, has occurred during domestication by way of loci that dominantly inhibit awn development, such as Tipped1 (B1), Tipped2 (B2), and Hooded (Hd). Here we identify and characterize the B1 gene. B1 was identified using bulked segregant RNA-sequencing of an F2 durum wheat population and through deletion mapping of awned bread wheat mutants. Functional characterization was accomplished by gene overexpression while haplotype analyses assessed B1 polymorphisms and genetic variation. Located on chromosome 5A, B1 is a C2H2 zinc finger encoding gene with ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. Constitutive overexpression of B1 in awned wheat produced an awnletted phenotype with pleiotropic effects on plant height and fertility. Transcriptome analysis of B1 overexpression plants suggests a role as transcriptional repressor, putatively targeting pathways involved in cell proliferation. Haplotype analysis revealed a conserved B1 coding region with proximal polymorphisms and supported the contention that B1 is mainly responsible for awnletted wheats globally. B1, predominantly responsible for awn inhibition in wheat, encodes a C2H2 zinc finger protein with EAR motifs which putatively functions as a transcriptional repressor.


Assuntos
Genes Dominantes , Loci Gênicos , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Triticum/anatomia & histologia , Triticum/genética , Dedos de Zinco , Motivos de Aminoácidos , Pão , Proliferação de Células/genética , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Haplótipos/genética , Ácidos Indolacéticos/metabolismo , Família Multigênica , Mutação/genética , Fases de Leitura Aberta/genética , Desenvolvimento Vegetal/genética , Polimorfismo Genético
5.
Theor Appl Genet ; 133(6): 1873-1886, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32060572

RESUMO

KEY MESSAGE: Four QTL for ergot resistance (causal pathogen Claviceps purpurea) have been identified in the durum wheat cultivar Greenshank. Claviceps purpurea is a pathogen of grasses that infects flowers, replacing the seed with an ergot sclerotium. Ergot presents a significant problem to rye, barley and wheat, in particular hybrid seed production systems. In addition, there is evidence that the highly toxic alkaloids that accumulate within sclerotia can cross-contaminate otherwise healthy grain. Host resistance to C. purpurea is rare, few resistance loci having been identified. In this study, four ergot resistance loci are located on chromosomes 1B, 2A, 5A and 5B in the durum wheat cv. Greenshank. Ergot resistance was assessed through analysis of phenotypes associated with C. purpurea infection, namely the number of inoculated flowers that produced sclerotia, or resulted in ovary death but no sclerotia, the levels of honeydew produced, total sclerotia weight and average sclerotia weight and size per spike. Ergot testing was undertaken in Canada and the UK. A major effect QTL, QCp.aafc.DH-2A, was detected in both the Canadian and UK experiments and had a significant effect on honeydew production levels. QCp.aafc.DH-5B had the biggest influence on total sclerotia weight per spike. QCp.aafc.DH-1B was only detected in the Canadian experiments and QCp.aafc.DH-5A in the UK experiment. An RNASeq analysis, undertaken to identify wheat differentially expressed genes associated with different combinations of the four ergot resistance QTL, revealed a disproportionate number of DEGs locating to the QCp.aafc.DH-1B, QCp.aafc.DH-2A and QCp.aafc.DH-5B QTL intervals.


Assuntos
Claviceps/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética , Genes de Plantas , Hordeum/genética , Hordeum/microbiologia , Fenótipo , Poaceae/genética , Poaceae/microbiologia , Transcrição Gênica , Triticum/microbiologia
6.
BMC Genomics ; 20(1): 925, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795948

RESUMO

BACKGROUND: Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. RESULTS: Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. CONCLUSIONS: Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.


Assuntos
Resistência à Doença/genética , Fusarium , Redes Reguladoras de Genes , Triticum/genética , Triticum/microbiologia , Expressão Gênica , Genótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Tetraploidia , Triticum/metabolismo
7.
Sci Rep ; 10(1): 7567, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372012

RESUMO

The durum wheat line DT696 is a source of moderate Fusarium head blight (FHB) resistance. Previous analysis using a bi-parental population identified two FHB resistance quantitative trait loci (QTL) on chromosome 5A: 5A1 was co-located with a plant height QTL, and 5A2 with a major maturity QTL. A Genome-Wide Association Study (GWAS) of DT696 derivative lines from 72 crosses based on multi-environment FHB resistance, plant height, and maturity phenotypic data was conducted to improve the mapping resolution and further elucidate the genetic relationship of height and maturity with FHB resistance. The Global Tetraploid Wheat Collection (GTWC) was exploited to identify durum wheat lines with DT696 allele and additional recombination events. The 5A2 QTL was confirmed in the derivatives, suggesting the expression stability of the 5A2 QTL in various genetic backgrounds. The GWAS led to an improved mapping resolution rendering the 5A2 interval 10 Mbp shorter than the bi-parental QTL mapping interval. Haplotype analysis using SNPs within the 5A2 QTL applied to the GTWC identified novel haplotypes and recombination breakpoints, which could be exploited for further improvement of the mapping resolution. This study suggested that GWAS of derivative breeding lines is a credible strategy for improving mapping resolution.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Recombinação Genética , Triticum/genética , Fusarium , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Desequilíbrio de Ligação , Doenças das Plantas/microbiologia , Característica Quantitativa Herdável , Seleção Genética , Triticum/microbiologia
8.
PLoS One ; 13(10): e0204362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307951

RESUMO

Breeding for Fusarium head blight (FHB) resistance in durum wheat is complicated by the quantitative trait expression and narrow genetic diversity of available resources. High-density mapping of the FHB resistance quantitative trait loci (QTL), evaluation of their co-localization with plant height and maturity QTL and the interaction among the identified QTL are the objectives of this study. Two doubled haploid (DH) populations, one developed from crosses between Triticum turgidum ssp. durum lines DT707 and DT696 and the other between T. turgidum ssp. durum cv. Strongfield and T. turgidum ssp. carthlicum cv. Blackbird were genotyped using the 90K Infinium iSelect chip and evaluated phenotypically at multiple field FHB nurseries over years. A moderate broad-sense heritability indicated a genotype-by-environment interaction for the expression of FHB resistance in both populations. Resistance QTL were identified for the DT707 × DT696 population on chromosomes 1B, 2B, 5A (two loci) and 7A and for the Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B with the QTL on chromosome 1A and those on chromosome 5A being more consistently expressed over environments. FHB resistance co-located with plant height and maturity QTL on chromosome 5A and with a maturity QTL on chromosome 7A for the DT707 × DT696 population. Resistance also co-located with plant height QTL on chromosomes 2A and 3A and with maturity QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Additive × additive interactions were identified, for example between the two FHB resistance QTL on chromosome 5A for the DT707 × DT696 population and the FHB resistance QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Application of the Single Nucleotide Polymorphic (SNP) markers associated with FHB resistance QTL identified in this study will accelerate combining genes from the two populations.


Assuntos
Resistência à Doença/genética , Fusarium , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Especificidade da Espécie , Triticum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa