Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(6): 732-741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321209

RESUMO

Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized ß-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.


Assuntos
Enzimas Imobilizadas , Galactosiltransferases , Glicosilação , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Galactosiltransferases/metabolismo , Galactosiltransferases/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
2.
Metab Eng ; 82: 183-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387677

RESUMO

Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the predictive capability of mechanistic models for process design and optimization. Here, we present Cellular Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only metabolite concentrations from spent media, although constraining the metabolic model with other omics data can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a 90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to model the dynamic conditions in a bioreactor.


Assuntos
Reatores Biológicos , Modelos Biológicos , Transporte Biológico
3.
Metab Eng ; 75: 181-191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566974

RESUMO

Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models that equally explain the -omics data. Here we quantify the influence of alternate optima on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find that metabolic tasks defining an organism's phenotype must be explicitly and quantitatively protected. The scope of alternate models is strongly influenced by algorithm choice and the topological properties of the parent genome-scale model with fatty acid metabolism and intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE extracted the most reproducible context-specific models and models generated using MBA had the most alternate solutions. There were fewer qualitatively different solutions generated by GIMME in E. coli, but these increased substantially in the mammalian models. Screening ensembles using a receiver operating characteristic plot identified the best-performing models. A comprehensive evaluation of models extracted using combinations of extraction methods and expression thresholds revealed that GIMME generated the best-performing models in E. coli, whereas mCADRE is better suited for complex mammalian models. These findings suggest guidelines for benchmarking -omics integration algorithms and motivate the development of a systematic workflow to enumerate alternate models and extract biologically relevant context-specific models.


Assuntos
Escherichia coli , Modelos Biológicos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma , Redes e Vias Metabólicas , Expressão Gênica , Mamíferos/genética
4.
Metab Eng ; 76: 87-96, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610518

RESUMO

Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins, for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity. Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often guided by mathematical models. However, each study considers a unique glycosylation reaction network that is tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network, CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies. Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO cell genome scale models.


Assuntos
Glicoproteínas , Glicosiltransferases , Cricetinae , Animais , Glicosilação , Cricetulus , Células CHO , Glicoproteínas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biotechnol Bioeng ; 120(9): 2460-2478, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36866411

RESUMO

Genome-scale metabolic models (GEMs) possess the power to revolutionize bioprocess and cell line engineering workflows thanks to their ability to predict and understand whole-cell metabolism in silico. Despite this potential, it is currently unclear how accurately GEMs can capture both intracellular metabolic states and extracellular phenotypes. Here, we investigate this knowledge gap to determine the reliability of current Chinese hamster ovary (CHO) cell metabolic models. We introduce a new GEM, iCHO2441, and create CHO-S and CHO-K1 specific GEMs. These are compared against iCHO1766, iCHO2048, and iCHO2291. Model predictions are assessed via comparison with experimentally measured growth rates, gene essentialities, amino acid auxotrophies, and 13 C intracellular reaction rates. Our results highlight that all CHO cell models are able to capture extracellular phenotypes and intracellular fluxes, with the updated GEM outperforming the original CHO cell GEM. Cell line-specific models were able to better capture extracellular phenotypes but failed to improve intracellular reaction rate predictions in this case. Ultimately, this work provides an updated CHO cell GEM to the community and lays a foundation for the development and assessment of next-generation flux analysis techniques, highlighting areas for model improvements.


Assuntos
Genoma , Redes e Vias Metabólicas , Cricetinae , Animais , Cricetulus , Células CHO , Reprodutibilidade dos Testes , Redes e Vias Metabólicas/genética
6.
Biotechnol Bioeng ; 120(9): 2479-2493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37272445

RESUMO

Metabolic modeling has emerged as a key tool for the characterization of biopharmaceutical cell culture processes. Metabolic models have also been instrumental in identifying genetic engineering targets and developing feeding strategies that optimize the growth and productivity of Chinese hamster ovary (CHO) cells. Despite their success, metabolic models of CHO cells still present considerable challenges. Genome-scale metabolic models (GeMs) of CHO cells are very large (>6000 reactions) and are difficult to constrain to yield physiologically consistent flux distributions. The large scale of GeMs also makes the interpretation of their outputs difficult. To address these challenges, we have developed CHOmpact, a reduced metabolic network that encompasses 101 metabolites linked through 144 reactions. Our compact reaction network allows us to deploy robust, nonlinear optimization and ensure that the computed flux distributions are physiologically consistent. Furthermore, our CHOmpact model delivers enhanced interpretability of simulation results and has allowed us to identify the mechanisms governing shifts in the anaplerotic consumption of asparagine and glutamate as well as an important mechanism of ammonia detoxification within mitochondria. CHOmpact, thus, addresses key challenges of large-scale metabolic models and will serve as a platform to develop dynamic metabolic models for the control and optimization of biopharmaceutical cell culture processes.


Assuntos
Genoma , Redes e Vias Metabólicas , Cricetinae , Animais , Cricetulus , Células CHO , Simulação por Computador
7.
Nucleic Acids Res ; 48(22): e129, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152073

RESUMO

5' Cap structures are ubiquitous on eukaryotic mRNAs, essential for post-transcriptional processing, translation initiation and stability. Here we describe a biosensor designed to detect the presence of cap structures on mRNAs that is also sensitive to mRNA degradation, so uncapped or degraded mRNAs can be detected in a single step. The biosensor is based on a chimeric protein that combines the recognition and transduction roles in a single molecule. The main feature of this sensor is its simplicity, enabling semi-quantitative analyses of capping levels with minimal instrumentation. The biosensor was demonstrated to detect the capping level on several in vitro transcribed mRNAs. Its sensitivity and dynamic range remained constant with RNAs ranging in size from 250 nt to approximately 2700 nt and the biosensor was able to detect variations in the capping level in increments of at least 20%, with a limit of detection of 2.4 pmol. Remarkably, it also can be applied to more complex analytes, such mRNA vaccines and mRNAs transcribed in vivo. This biosensor is an innovative example of a technology able to detect analytically challenging structures such as mRNA caps. It could find application in a variety of scenarios, from quality analysis of mRNA-based products such as vaccines to optimization of in vitro capping reactions.


Assuntos
Técnicas Biossensoriais , Capuzes de RNA/genética , RNA Mensageiro/isolamento & purificação , Transcrição Gênica , Biossíntese de Proteínas/genética , Estabilidade de RNA , RNA Mensageiro/genética
8.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563570

RESUMO

The effective treatment of autoimmune disorders can greatly benefit from disease-specific biomarkers that are functionally involved in immune system regulation and can be collected through minimally invasive procedures. In this regard, human serum IgG N-glycans are promising for uncovering disease predisposition and monitoring progression, and for the identification of specific molecular targets for advanced therapies. In particular, the IgG N-glycome in diseased tissues is considered to be disease-dependent; thus, specific glycan structures may be involved in the pathophysiology of autoimmune diseases. This study provides a critical overview of the literature on human IgG N-glycomics, with a focus on the identification of disease-specific glycan alterations. In order to expedite the establishment of clinically-relevant N-glycan biomarkers, the employment of advanced computational tools for the interpretation of clinical data and their relationship with the underlying molecular mechanisms may be critical. Glycoinformatics tools, including artificial intelligence and systems glycobiology approaches, are reviewed for their potential to provide insight into patient stratification and disease etiology. Challenges in the integration of such glycoinformatics approaches in N-glycan biomarker research are critically discussed.


Assuntos
Doenças Autoimunes , Imunoglobulina G , Inteligência Artificial , Biomarcadores/metabolismo , Glicômica/métodos , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Polissacarídeos/química
9.
Biochem Soc Trans ; 49(2): 915-931, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33704400

RESUMO

Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.


Assuntos
Glicoproteínas/metabolismo , Engenharia Metabólica/métodos , Polissacarídeos/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicômica/métodos , Glicoproteínas/genética , Glicosilação , Polissacarídeos/química , Proteômica/métodos
10.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804825

RESUMO

The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg-1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg-1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.


Assuntos
Anticorpos Monoclonais/metabolismo , Tamanho Celular , Concentração Osmolar , Processamento de Proteína Pós-Traducional , Animais , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , Glicosilação
11.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769426

RESUMO

Accumulation of unfolded/misfolded proteins in neuronal cells perturbs endoplasmic reticulum homeostasis, triggering a stress cascade called unfolded protein response (UPR), markers of which are upregulated in Alzheimer's disease (AD) brain specimens. We measured the UPR dynamic response in three human neuroblastoma cell lines overexpressing the wild-type and two familial AD (FAD)-associated mutant forms of amyloid precursor protein (APP), the Swedish and Swedish-Indiana mutations, using gene expression analysis. The results reveal a differential response to subsequent environmental stress depending on the genetic background, with cells overexpressing the Swedish variant of APP exhibiting the highest global response. We further developed a dynamic mathematical model of the UPR that describes the activation of the three branches of this stress response in response to unfolded protein accumulation. Model-based analysis of the experimental data suggests that the mutant cell lines experienced a higher protein load and subsequent magnitude of transcriptional activation compared to the cells overexpressing wild-type APP, pointing to higher susceptibility of mutation-carrying cells to stress. The model was then used to understand the effect of therapeutic agents salubrinal, lithium, and valproate on signalling through different UPR branches. This study proposes a novel integrated platform to support the development of therapeutics for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Simulação por Computador , Estresse do Retículo Endoplasmático , Predisposição Genética para Doença , Humanos , Mutação , Resposta a Proteínas não Dobradas
12.
Biotechnol Bioeng ; 116(7): 1612-1626, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802295

RESUMO

Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch-to-batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade-off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding - specifically that of galactose and uridine - on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher-performing bioprocesses.


Assuntos
Anticorpos Monoclonais/biossíntese , Modelos Biológicos , Animais , Células CHO , Cricetulus , Glicosilação
13.
Biotechnol Bioeng ; 115(2): 512-518, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28921534

RESUMO

Transient gene expression (TGE) is a methodology employed in bioprocessing for the fast provision of recombinant protein material. Mild hypothermia is often introduced to overcome the low yield typically achieved with TGE and improve specific protein productivity. It is therefore of interest to examine the impact of mild hypothermic temperatures on both the yield and quality of transiently expressed proteins and the relationship to changes in cellular processes and metabolism. In this study, we focus on the ability of a Chinese hamster ovary cell line to galactosylate a recombinant monoclonal antibody (mAb) product. Through experimentation and flux balance analysis, our results show that TGE in mild hypothermic conditions led to a 76% increase in qP compared to TGE at 36.5°C in our system. This increase is accompanied by increased consumption of nutrients and amino acids, together with increased production of intracellular nucleotide sugar species, and higher rates of mAb galactosylation, despite a reduced rate of cell growth. The reduction in biomass accumulation allowed cells to redistribute their energy and resources toward mAb synthesis and Fc-glycosylation. Interestingly, the higher capacity of cells to galactosylate the recombinant product in TGE at 32°C appears not to have been assisted by the upregulation of galactosyltransferases (GalTs), but by the increased expression of N-acetylglucosaminyltransferase II (GnTII) in this cell line, which facilitated the production of bi-antennary glycan structures for further processing.


Assuntos
Anticorpos Monoclonais , Fragmentos Fc das Imunoglobulinas , Proteínas Recombinantes , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Expressão Gênica/genética , Expressão Gênica/fisiologia , Glicosilação , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Análise do Fluxo Metabólico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
14.
Biotechnol Bioeng ; 114(12): 2771-2781, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28843000

RESUMO

A major challenge in downstream purification of monoclonal antibodies (mAb) is the removal of host cell proteins (HCPs). Previous studies have shown that cell culture conditions significantly impact the HCP content at harvest. However, it is currently unclear how process conditions affect physiological changes in the host cell population, and how these changes, in turn, cascade down to change the HCP profile. We examined how temperature downshift (TDS) to mild hypothermia affects key upstream performance indicators, that is antibody titre, HCP concentration and HCP species, across the cell culture decline phase and at harvest through the lens of changes in cellular behavior. Mild hypothermic conditions introduced on day 5 of fed-batch Chinese hamster ovary (CHO) cell bioreactors resulted in a lower cell proliferation rate but larger percentages of healthier cells across the cell culture decline phase compared to bioreactors maintained at standard physiological temperature. Moreover, the onset of apoptosis was less evident in mild hypothermic cultures. Consequently, mild hypothermic cultures took an extra 5 days to reach an integral viable cell concentration (IVCC) and antibody yield similar to that of the control at standard physiological temperature. When cell viability dropped below 80%, mild hypothermic cell cultures had a reduced variety of HCP species by 36%, including approximately 44% and 27% lower proteases and chaperones, respectively, despite having similar HCP concentration. This study suggests that TDS may be a good strategy to provide cleaner downstream feedstocks by reducing the variety of HCPs and to maintain product integrity by reducing the number of proteases and chaperones.


Assuntos
Anticorpos Monoclonais/biossíntese , Células CHO/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Temperatura Baixa , Proteoma/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Cricetulus , Regulação da Expressão Gênica/fisiologia
15.
Biotechnol Bioeng ; 114(6): 1290-1300, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28112405

RESUMO

Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole-cell biosensors. Biotechnol. Bioeng. 2017;114: 1290-1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Bioensaio/instrumentação , Produtos Biológicos/metabolismo , Técnicas Biossensoriais/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Escherichia coli/efeitos dos fármacos , Ácido Láctico/metabolismo , Produtos Biológicos/isolamento & purificação , Reatores Biológicos/microbiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Ácido Láctico/análise , Ácido Láctico/farmacologia , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Biotechnol Bioeng ; 114(7): 1570-1582, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27869292

RESUMO

Despite the positive effects of mild hypothermic conditions on monoclonal antibody (mAb) productivity (qmAb ) during mammalian cell culture, the impact of reduced culture temperature on mAb Fc-glycosylation and the mechanism behind changes in the glycan composition are not fully established. The lack of knowledge about the regulation of dynamic intracellular processes under mild hypothermia restricts bioprocess optimization. To address this issue, a mathematical model that quantitatively describes Chinese hamster ovary (CHO) cell behavior and metabolism, mAb synthesis and mAb N-linked glycosylation profile before and after the induction of mild hypothermia is constructed. Results from this study show that the model is capable of representing experimental results well in all of the aspects mentioned above, including the N-linked glycosylation profile of mAb produced under mild hypothermia. Most importantly, comparison between model simulation results for different culture temperatures suggests the reduced rates of nucleotide sugar donor production and galactosyltransferase (GalT) expression to be critical contributing factors that determine the variation in Fc-glycan profiles between physiological and mild hypothermic conditions in stable CHO transfectants. This is then confirmed using experimental measurements of GalT expression levels, thereby closing the loop between the experimental and the computational system. The identification of bottlenecks within CHO cell metabolism under mild hypothermic conditions will aid bioprocess optimization, for example, by tailoring feeding strategies to improve NSD production, or manipulating the expression of specific glycosyltransferases through cell line engineering. Biotechnol. Bioeng. 2017;114: 1570-1582. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.


Assuntos
Anticorpos Monoclonais/imunologia , Glicosiltransferases/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Modelos Imunológicos , Polissacarídeos/imunologia , Animais , Células CHO , Simulação por Computador , Cricetulus , Glicosilação , Calefação/métodos , Temperatura
17.
Faraday Discuss ; 202: 415-431, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28665423

RESUMO

Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).


Assuntos
Beta vulgaris/metabolismo , Carboidratos/biossíntese , Preparações Farmacêuticas/metabolismo , Beta vulgaris/química , Carboidratos/química , Preparações Farmacêuticas/química
18.
Biochem Eng J ; 105(Pt B): 455-472, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26865832

RESUMO

Improved understanding of heterogeneous cellulose hydrolysis by cellulases is the basis for optimising enzymatic catalysis-based cellulosic biorefineries. A detailed mechanistic model is developed to describe the dynamic adsorption/desorption and synergistic chain-end scissions of cellulases (endoglucanase, exoglucanase, and ß-glucosidase) upon amorphous cellulose. The model can predict evolutions of the chain lengths of insoluble cellulose polymers and production of soluble sugars during hydrolysis. Simultaneously, a modelling framework for uncertainty analysis is built based on a quasi-Monte-Carlo method and global sensitivity analysis, which can systematically identify key parameters, help refine the model and improve its identifiability. The model, initially comprising 27 parameters, is found to be over-parameterized with structural and practical identification problems under usual operating conditions (low enzyme loadings). The parameter estimation problem is therefore mathematically ill posed. The framework allows us, on the one hand, to identify a subset of 13 crucial parameters, of which more accurate confidence intervals are estimated using a given experimental dataset, and, on the other hand, to overcome the identification problems. The model's predictive capability is checked against an independent set of experimental data. Finally, the optimal composition of cellulases cocktail is obtained by model-based optimisation both for enzymatic hydrolysis and for the process of simultaneous saccharification and fermentation.

19.
Biotechnol Bioeng ; 112(6): 1165-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25545631

RESUMO

The application of mild hypothermic conditions to cell culture is a routine industrial practice used to improve recombinant protein production. However, a thorough understanding of the regulation of dynamic cellular processes at lower temperatures is necessary to enhance bioprocess design and optimization. In this study, we investigated the impact of mild hypothermia on protein glycosylation. Chinese hamster ovary (CHO) cells expressing a monoclonal antibody (mAb) were cultured at 36.5°C and with a temperature shift to 32°C during late exponential/early stationary phase. Experimental results showed higher cell viability with decreased metabolic rates. The specific antibody productivity increased by 25% at 32°C and was accompanied by a reduction in intracellular nucleotide sugar donor (NSD) concentrations and a decreased proportion of the more processed glycan structures on the mAb constant region. To better understand CHO cell metabolism at 32°C, flux balance analysis (FBA) was carried out and constrained with exometabolite data from stationary phase of cultures with or without a temperature shift. Estimated fluxomes suggested reduced fluxes of carbon species towards nucleotide and NSD synthesis and more energy was used for product formation. Expression of the glycosyltransferases that are responsible for N-linked glycan branching and elongation were significantly lower at 32°C. As a result of mild hypothermia, mAb glycosylation was shown to be affected by both NSD availability and glycosyltransferase expression. The combined experimental/FBA approach generated insight as to how product glycosylation can be impacted by changes in culture temperature. Better feeding strategies can be developed based on the understanding of the metabolic flux distribution.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Técnicas de Cultura de Células/métodos , Temperatura Baixa , Glicosilação/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Animais , Células CHO , Carbono/metabolismo , Cricetulus , Expressão Gênica , Glicosiltransferases/análise , Análise do Fluxo Metabólico , Polissacarídeos/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Biotechnol Bioeng ; 112(3): 521-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25220616

RESUMO

Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-ß-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans was found to be limited by UDP-Gal biosynthesis, which was observed to be both cell line and cultivation condition-dependent. Extracellular glucose and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality.


Assuntos
Aminoácidos/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Glucose/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Animais , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Glicosilação , Redes e Vias Metabólicas , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa