Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(1): 504-9, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344272

RESUMO

The spiking output of interneurons is key for rhythm generation in the brain. However, what controls interneuronal firing remains incompletely understood. Here we combine dynamic clamp experiments with neural network simulations to understand how tonic GABAA conductance regulates the firing pattern of CA3 interneurons. In baseline conditions, tonic GABAA depolarizes these cells, thus exerting an excitatory action while also reducing the excitatory postsynaptic potential (EPSP) amplitude through shunting. As a result, the emergence of weak tonic GABAA conductance transforms the interneuron firing pattern driven by individual EPSPs into a more regular spiking mode determined by the cell intrinsic properties. The increased regularity of spiking parallels stronger synchronization of the local network. With further increases in tonic GABAA conductance the shunting inhibition starts to dominate over excitatory actions and thus moderates interneuronal firing. The remaining spikes tend to follow the timing of suprathreshold EPSPs and thus become less regular again. The latter parallels a weakening in network synchronization. Thus, our observations suggest that tonic GABAA conductance can bidirectionally control brain rhythms through changes in the excitability of interneurons and in the temporal structure of their firing patterns.


Assuntos
Região CA3 Hipocampal/metabolismo , Interneurônios/fisiologia , Receptores de GABA-A/metabolismo , Potenciais de Ação/fisiologia , Animais , Encéfalo/metabolismo , Região CA3 Hipocampal/embriologia , Potenciais Pós-Sinápticos Excitadores , Gramicidina/química , Masculino , Modelos Biológicos , Modelos Neurológicos , Neurônios/metabolismo , Oscilometria , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transmissão Sináptica/fisiologia , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
2.
J Neurosci ; 27(9): 2331-7, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17329430

RESUMO

Histamine provokes itching and is a major skin disease complaint. Histamine is known to excite a subset of sensory neurons, predominantly C-fibers. Although histamine is pruritogenic, its signaling pathways that excite sensory neurons have not been identified. Because the metabolic products of lipoxygenases (LOs) activate transient receptor potential vanilloid receptor-1 (TRPV1) in sensory neurons, we hypothesized that histamine excites sensory neurons by activating TRPV1 via phospholipase A2 (PLA2) and LO stimulation. In cultured sensory neurons, histamine evoked inward currents that were reduced by capsazepine, a TRPV1 blocker. Moreover, histamine provoked inward currents when histamine receptor subtype 1 (H1R) and TRPV1 were expressed heterologously, but not when H1R or TRPV1 was expressed alone. In addition, histamine caused Ca2+ influxes in sensory neurons in wild-type mice but not in TRPV1-/- mice. Furthermore, histamine caused a 2.5-fold increase in the production of 12-hydroxyeicosatetraenoic acid, a metabolite of LO, in cultured sensory neurons. When injected subcutaneously into the necks of mice, histamine caused bouts of scratching, which were greatly reduced by pretreatment with capsazepine, a TRPV1 blocker, and by inhibitors of PLA2, LO, and H1R. Furthermore, mice lacking TRPV1 markedly reduced histamine-induced scratching compared with wild type. Together, these results indicate that TRPV1 plays a key role in mediating the pruritogenic action of histamine via the PLA2/LO pathway.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Fosfolipases A/metabolismo , Canais de Cátion TRPV/fisiologia , Animais , Cálcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Células Cultivadas , Ativação Enzimática , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosfolipases A2 , Ratos , Canais de Cátion TRPV/antagonistas & inibidores
3.
J Med Chem ; 48(18): 5823-36, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16134949

RESUMO

Recently, 1,3-diarylalkyl thioureas have merged as one of the promising nonvanilloid TRPV1 antagonists possessing excellent therapeutic potential in pain regulation. In this paper, the full structure-activity relationship for TRPV1 antagonism of a novel series of 1,3-diarylalky thioureas is reported. Exploration of the structure-activity relationship, by systemically modulating three essential pharmacophoric regions, led to six examples of 1,3-dibenzyl thioureas, which exhibit Ca(2+) uptake inhibition in rat DRG neuron with IC(50) between 10 and 100 nM.


Assuntos
Canais Iônicos/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/síntese química , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Gânglios Espinais/citologia , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Canais de Cátion TRPV , Tioureia/farmacologia
4.
J Biol Chem ; 279(8): 7048-54, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14630912

RESUMO

Vanilloid receptor 1 (VR1), a capsaicin receptor, is known to play a major role in mediating inflammatory thermal nociception. Although the physiological role and biophysical properties of VR1 are known, the mechanism of its activation by ligands is poorly understood. Here we show that VR1 must be phosphorylated by Ca2+-calmodulin dependent kinase II (CaMKII) before its activation by capsaicin. In contrast, the dephosphorylation of VR1 by calcineurin leads to a desensitization of the receptor. Moreover, point mutations in VR1 at two putative consensus sites for CaMKII failed to elicit capsaicin-sensitive currents and caused a concomitant reduction in VR1 phosphorylation in vivo. Such mutants also lost their high affinity binding with [3H]resiniferatoxin, a potent capsaicin receptor agonist. We conclude that the dynamic balance between the phosphorylation and dephosphorylation of the VR1 channel by CaMKII and calcineurin, respectively, controls the activation/desensitization states by regulating VR1 binding. Furthermore, because sensitization by protein kinase A and C converge at these sites, phosphorylation stress in the cell appears to control a wide range of excitabilities in response to various adverse stimuli.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Receptores de Droga/metabolismo , Animais , Sítios de Ligação , Biotinilação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Capsaicina/química , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Diterpenos/farmacologia , Humanos , Immunoblotting , Cinética , Ligantes , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Neurônios/metabolismo , Oócitos/metabolismo , Fosforilação , Mutação Puntual , Ligação Proteica , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Ratos
5.
Eur J Neurosci ; 17(12): 2630-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12823470

RESUMO

Ion channels in sensory neurons are molecular sensors that detect external stimuli and transduce them to neuronal signals. Although Ca2+-activated nonselective cation (CAN) channels were found in many cell types, CAN channels in mammalian sensory neurons are not yet identified. In the present study, we describe an ion channel that is activated by intracellular Ca2+ in cultured rat sensory neurons. Half-maximal concentration of Ca2+ in activating the CAN channel was approximately 780 micro m. The current-voltage relationship of this channel was linear with a unit conductance of 28.8 +/- 0.4 pS at -60 mV in symmetrical 140 mm Na+ solution. The CAN channel was permeable to monovalent cations such as Na+, K+, Cs+, and Li+, but poorly permeable to Ca2+. The CAN channel in mammalian sensory neurons was reversibly blocked by intracellular adenine nucleotides, such as ATP, ADP, and AMP. Interestingly, single-channel currents activated by Ca2+ were blocked by fenamates, such as flufenamic acid, a class of nonsteroidal anti-inflammatory drugs. Thus, these results suggest that CAN channels in mammalian sensory neurons would participate in modulating nociceptive neural transmission in response to ever-changing intracellular Ca2+ in the local microenvironment.


Assuntos
Cálcio/metabolismo , Canais Iônicos/fisiologia , Neurônios Aferentes/fisiologia , Nucleotídeos de Adenina/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Capsaicina/farmacologia , Células Cultivadas , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Egtázico/farmacologia , Condutividade Elétrica , Espaço Extracelular/metabolismo , Gânglios Espinais , Ibuprofeno/farmacologia , Potenciais da Membrana/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Receptores de Droga/fisiologia , ortoaminobenzoatos/farmacologia
6.
Bioorg Med Chem Lett ; 13(24): 4389-93, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14643332

RESUMO

A novel non-vanilloid VR1 antagonist consisting of a new vanilloid equivalent exhibits excellent analgesic effects as well as highly potent antagonistic activities in both capsaicin single channel and calcium uptake assays. In addition, the structural requirement for the vanilloid equivalent of the potent VR1 antagonist has also been elucidated.


Assuntos
Analgésicos/síntese química , Capsaicina/análogos & derivados , Receptores de Droga/antagonistas & inibidores , Analgésicos/química , Analgésicos/farmacologia , Animais , Capsaicina/síntese química , Capsaicina/química , Capsaicina/farmacologia , Camundongos , Modelos Moleculares , Conformação Molecular , Dor/prevenção & controle , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa