Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 613(7942): 42-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600060

RESUMO

Flatbands have become a cornerstone of contemporary condensed-matter physics and photonics. In electronics, flatbands entail comparable energy bandwidth and Coulomb interaction, leading to correlated phenomena such as the fractional quantum Hall effect and recently those in magic-angle systems. In photonics, they enable properties including slow light1 and lasing2. Notably, flatbands support supercollimation-diffractionless wavepacket propagation-in both systems3,4. Despite these intense parallel efforts, flatbands have never been shown to affect the core interaction between free electrons and photons. Their interaction, pivotal for free-electron lasers5, microscopy and spectroscopy6,7, and particle accelerators8,9, is, in fact, limited by a dimensionality mismatch between localized electrons and extended photons. Here we reveal theoretically that photonic flatbands can overcome this mismatch and thus remarkably boost their interaction. We design flatband resonances in a silicon-on-insulator photonic crystal slab to control and enhance the associated free-electron radiation by tuning their trajectory and velocity. We observe signatures of flatband enhancement, recording a two-order increase from the conventional diffraction-enabled Smith-Purcell radiation. The enhancement enables polarization shaping of free-electron radiation and characterization of photonic bands through electron-beam measurements. Our results support the use of flatbands as test beds for strong light-electron interaction, particularly relevant for efficient and compact free-electron light sources and accelerators.

2.
Opt Express ; 31(19): 31308-31315, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710653

RESUMO

Achieving high repeatability and efficiency in laser-induced strong shock wave excitation remains a significant technical challenge, as evidenced by the extensive efforts undertaken at large-scale national laboratories to optimize the compression of light element pellets. In this study, we propose and model a novel optical design for generating strong shocks at a tabletop scale. Our approach leverages the spatial and temporal shaping of multiple laser pulses to form concentric laser rings on condensed matter samples. Each laser ring initiates a two-dimensional focusing shock wave that overlaps and converges with preceding shock waves at a central point within the ring. We present preliminary experimental results for a single ring configuration. To enable high-power laser focusing at the micron scale, we demonstrate experimentally the feasibility of employing dielectric metasurfaces with exceptional damage threshold, experimentally determined to be 1.1 J/cm2, as replacements for conventional optics. These metasurfaces enable the creation of pristine, high-fluence laser rings essential for launching stable shock waves in materials. Herein, we showcase results obtained using a water sample, achieving shock pressures in the gigapascal (GPa) range. Our findings provide a promising pathway towards the application of laser-induced strong shock compression in condensed matter at the microscale.

3.
Nano Lett ; 22(11): 4362-4367, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35587204

RESUMO

Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque, or highly scattering.

4.
Opt Express ; 28(23): 33854-33868, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182865

RESUMO

We demonstrate new axisymmetric inverse-design techniques that can solve problems radically different from traditional lenses, including reconfigurable lenses (that shift a multi-frequency focal spot in response to refractive-index changes) and widely separated multi-wavelength lenses (λ = 1 µm and 10 µm). We also present experimental validation for an axisymmetric inverse-designed monochrome lens in the near-infrared fabricated via two-photon polymerization. Axisymmetry allows fullwave Maxwell solvers to be scaled up to structures hundreds or even thousands of wavelengths in diameter before requiring domain-decomposition approximations, while multilayer topology optimization with ∼105 degrees of freedom can tackle challenging design problems even when restricted to axisymmetric structures.

5.
J Am Chem Soc ; 140(20): 6501-6508, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29762019

RESUMO

Materials with magneto-optic (MO) properties have enabled critical fiber-optic applications and highly sensitive magnetic field sensors. While traditional MO materials are inorganic in nature, new generations of MO materials based on organic semiconducting polymers could allow increased versatility for device architectures, manufacturing options, and flexible mechanics. However, the origin of MO activity in semiconducting polymers is far from understood. In this paper, we report high MO activity observed in a chiral helical poly-3-(alkylsulfone)thiophene (P3AST), which confirms a new design for the creation of a giant Faraday effect with Verdet constants up to (7.63 ± 0.78) × 104 deg T-1 m-1 at 532 nm. We have determined that the sign of the Verdet constant and its magnitude are related to the helicity of the polymer at the measured wavelength. The Faraday rotation and the helical conformation of P3AST are modulated by thermal annealing, which is further supported by DFT calculations and MD simulations. Our results demonstrate that helical polymers exhibit enhanced Verdet constants and expand the previous design space for polythiophene MO materials that was thought to be limited to highly regular lamellar structures. The structure-property studies herein provide insights for the design of next-generation MO materials based upon semiconducting organic polymers.

6.
Science ; 381(6654): 205-209, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440648

RESUMO

Quantum field theory suggests that electromagnetic fields naturally fluctuate, and these fluctuations can be harnessed as a source of perfect randomness. Many potential applications of randomness rely on controllable probability distributions. We show that vacuum-level bias fields injected into multistable optical systems enable a controllable source of quantum randomness, and we demonstrated this concept in an optical parametric oscillator (OPO). By injecting bias pulses with less than one photon on average, we controlled the probabilities of the two possible OPO output states. The potential of our approach for sensing sub-photon-level fields was demonstrated by reconstructing the temporal shape of fields below the single-photon level. Our results provide a platform to study quantum dynamics in nonlinear driven-dissipative systems and point toward applications in probabilistic computing and weak field sensing.

7.
Opt Express ; 20(10): 11097-108, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565733

RESUMO

For the next generation of phoXonic, plasmonic, opto-mechanical and microfluidic devices, the capability to create 3D microstructures is highly desirable. Fabrication of such structures by conventional top-down techniques generally requires multiple time-consuming steps and is limited in the ability to define features spanning multiple layers at prescribed angles. 3D direct write lithography (3DDW) has the capability to draw nearly arbitrary structures, but is an inherently slow serial writing process. Here we present a method, denoted focused proximity field nanopatterning (FPnP), that combines 3DDW with single or multiphoton interference lithography (IL). By exposing a thick photoresist layer having a phase mask pattern imprinted on its surface with a tightly focused laser beam, we produce locally unique complex structures. The morphology can be varied based on beam and mask parameters. Patterns may be written rapidly in a single shot mode with arbitrary positions defined by the direct write, thus exploiting the control of 3DDW with the enhanced speed of phase mask IL. Here we show the ability for this technique to rapidly produce arrays of "stand-up" far IR resonators.


Assuntos
Óptica e Fotônica , Espectroscopia Terahertz/métodos , Análise de Elementos Finitos , Imageamento Tridimensional/métodos , Raios Infravermelhos , Lasers , Luz , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Nanoestruturas/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Fótons
8.
Science ; 375(6583): eabm9293, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35201858

RESUMO

Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. Scintillation has widespread applications in medical imaging, x-ray nondestructive inspection, electron microscopy, and high-energy particle detectors. Most research focuses on finding materials with brighter, faster, and more controlled scintillation. We developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium electrons in nanostructured optical systems. We then devised an approach based on integrating nanophotonic structures into scintillators to enhance their emission, obtaining nearly an order-of-magnitude enhancement in both electron-induced and x-ray-induced scintillation. Our framework should enable the development of a new class of brighter, faster, and higher-resolution scintillators with tailored and optimized performance.

9.
ACS Nano ; 15(12): 19917-19923, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34860001

RESUMO

The ability to control the propagation direction of light has long been a scientific goal. However, the fabrication of large-scale optical angular-range selective films is still a challenge. This paper presents a polymer-enabled large-scale fabrication method for broadband angular-range selective films that perform over the entire visible spectrum. Our approach involves stacking together multiple one-dimensional photonic crystals with various engineered periodicities to enlarge the bandgap across a wide spectral range based on theoretical predictions. Experimental results demonstrate that our method can achieve broadband transparency at a range of incident angles centered around normal incidence and reflectivity at larger viewing angles, doing so at large scale and low cost.

10.
ACS Appl Mater Interfaces ; 12(18): 20901-20911, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293169

RESUMO

Electrospray deposition (ESD) is a spray coating process that utilizes a high voltage to atomize a flowing solution into charged microdroplets. These self-repulsive droplets evaporate as they travel to a target substrate, depositing the solution solids. Our previous research investigated the conditions necessary to minimize charge dissipation and deposit a thickness-limited film that grows in area over time through self-limiting electrospray deposition. Such sprays possess the ability to conformally coat complex three-dimensional (3D) objects without changing the location of the spray needle or orientation of the object. This makes them ideally suited for the postprocessing of materials fabricated through additive manufacturing (AM), opening a paradigm of independent bulk and surface functionality. Having demonstrated 3D coating with film thickness in the range of 1-50 µm on a variety of conductive objects, in this study, we employed model substrates to quantitatively study the technique's limits with regard to geometry and scale. Specifically, we examined the effectiveness of thickness-limited ESD for coating recessed features with gaps ranging from 50 µm to 1 cm, as well as the ability to coat surfaces hidden from the line-of-sight of the spray needle. This was then extended to the coating of hydrogel structures printed by AM, demonstrating that coating could be conducted even into the body of the structures as a means to create hydrophobic surfaces without affecting the absorption-driven humidity response. Further, these coatings were robust enough to create superhydrophobicity in the entire structure, causing it to resist immersion in water.

11.
Rev Sci Instrum ; 91(3): 033711, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259926

RESUMO

We describe a high-speed single-shot multi-frame interferometric imaging technique enabling multiple interferometric images with femtosecond exposure time over a 50 ns event window to be recorded, following a single laser-induced excitation event. The stroboscopic illumination of a framing camera is made possible through the use of a doubling cavity that produces a femtosecond pulse train that is synchronized to the gated exposure windows of the individual frames of the camera. The imaging system utilizes a Michelson interferometer to extract phase and ultimately displacement information. We demonstrate the method by monitoring laser-induced deformation and the propagation of high-amplitude acoustic waves in a silicon nitride membrane. The method is applicable to a wide range of fast irreversible phenomena such as crack branching, shock-induced material damage, cavitation, and dielectric breakdown.

12.
J Am Chem Soc ; 131(1): 20-1, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19072056

RESUMO

A new polymerization technique that allows for the first-ever synthesis of poly(phenylenedicyanovinylene)s (PPCN2Vs) is described. PPCN2Vs, with their high electron affinities and structural versatility, seem ideally suited to address the need for new n-type polymers. Remarkably the polymers presented herein become more photoluminescent, in the thin film, under continuous irradiation.


Assuntos
Polímeros/síntese química , Polivinil/síntese química , Ânions/química , Oxirredução
13.
Nat Commun ; 10(1): 3176, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320664

RESUMO

Extracting light from silicon is a longstanding challenge in modern engineering and physics. While silicon has underpinned the past 70 years of electronics advancement, a facile tunable and efficient silicon-based light source remains elusive. Here, we experimentally demonstrate the generation of tunable radiation from a one-dimensional, all-silicon nanograting. Light is generated by the spontaneous emission from the interaction of these nanogratings with low-energy free electrons (2-20 keV) and is recorded in the wavelength range of 800-1600 nm, which includes the silicon transparency window. Tunable free-electron-based light generation from nanoscale silicon gratings with efficiencies approaching those from metallic gratings is demonstrated. We theoretically investigate the feasibility of a scalable, compact, all-silicon tunable light source comprised of a silicon Field Emitter Array integrated with a silicon nanograting that emits at telecommunication wavelengths. Our results reveal the prospects of a CMOS-compatible electrically-pumped silicon light source for possible applications in the mid-infrared and telecommunication wavelengths.

14.
J Mech Behav Biomed Mater ; 86: 71-76, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29957446

RESUMO

The high-velocity impact response of gelatin and synthetic hydrogel samples is investigated using a laser-based microballistic platform for launching and imaging supersonic micro-particles. The micro-particles are monitored during impact and penetration into the gels using a high-speed multi-frame camera that can record up to 16 images with nanosecond time resolution. The trajectories are compared with a Poncelet model for particle penetration, demonstrating good agreement between experiments and the model for impact in gelatin. The model is further validated on a synthetic hydrogel and the applicability of the results is discussed. We find the strength resistance parameter in the Poncelet model to be two orders of magnitude higher than in macroscopic experiments at comparable impact velocities. The results open prospects for testing high-rate behavior of soft materials on the microscale and for guiding the design of drug delivery methods using accelerated microparticles.


Assuntos
Gelatina/química , Hidrogéis/química , Microesferas
15.
Adv Mater ; 26(21): 3398-404, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24648015

RESUMO

M13 bacteriophages are assembled via a covalent layer-by-layer process to form a highly nanoporous network capable of organizing nanoparticles and acting as a scaffold for templating metal-oxides. The morphological and optical properties of the film itself are presented as well as its ability to organize and disperse metal nanoparticles.


Assuntos
Bacteriófago M13/química , Nanoestruturas/química , Bacteriófago M13/ultraestrutura , Compostos de Ouro/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Porosidade , Titânio/química
16.
Adv Mater ; 25(42): 6100-5, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23963926

RESUMO

A positive-tone 2D direct-write technique that can achieve sub-wavelength patterning by non-linear overlap effects in a conventional polymer system is described. The technique involves relatively inexpensive free-space optics, skips the usual development step, and promises the possibility of a lithographic method that is solvent-free.

17.
Nanoscale ; 3(7): 2730-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21503354

RESUMO

Lithographic alternatives to conventional layer-by-layer processes for the design of 3D structures such as photonic or phononic crystals often present a dichotomy: patterning control versus patterning area. We demonstrate a combined technique of large area interference lithography and local area direct write focused laser spike (FLaSk) annealing that can enable the microscale patterning of hierarchical structures defined in their morphology by the interference and defined in placement and shape by the direct write. This is accomplished by doping a commercial chemically amplified photoresist (SU-8) with an absorbing dye to provide thermal activation at a wavelength shifted from that causing UV crosslinking. In this way, the necessary post-exposure bake to complete the crosslinking of the resist is locally performed by the FLaSk laser, rather than globally on a hot plate. By utilizing the same experimental setup as used by a 3D direct write system, it is possible to integrate another level of patterning by enabling fully dense, arbitrarily written features on multiple length scales. Both experimental and simulated results of this novel processing method are shown.


Assuntos
Lasers , Nanotecnologia
18.
Macromolecules ; 40(25): 8833-8841, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18923651

RESUMO

Degradation experiments and model studies suggested that the longer lived green fluorescence from an aggregated poly(p-phenylene ethynylene) (PPE) was due to the presence of highly emissive, low-energy, anthryl defect sites rather than the emissive conjugated polymer excimers proposed in a previous report. After elucidating the origin of the green fluorescence, additional anthryl units were purposely incorporated into the polymer to enhance the blue-to-green fluorescence color change that accompanied polymer aggregation. The improved color contrast from this anthryl-doped conjugated polymer led to the development of crude solution-state and solid-state sensors, which, upon exposure to water, exhibited a visually noticeable blue-to-green fluorescence color change.

19.
Nano Lett ; 7(3): 647-51, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17295546

RESUMO

We present a new route for the fabrication of highly nonspherical complex multivalent submicron particles. This technique exploits the ability of holographic interference lithography to control geometrical elements such as symmetry and volume fraction in 3D lattices on the submicron scale. Colloidal particles with prescribed complex concave shapes are obtained by cleaving low volume fraction connected structures fabricated by interference lithography. Controlling which Wyckoff sites in the space group of the parent structure are connected assures specific "valencies" of the particles. Two types of particles, 2D "4-valent" and 3D "6-valent" particles are fabricated via this technique. In addition to being able to control multivalent particle shape, this technique has the potential to provide tight control over size, yield, and dispersity.

20.
J Am Chem Soc ; 127(39): 13726-31, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16190739

RESUMO

Conjugated polymers often display a decrease of fluorescence efficiency upon aggregation due in large part to enhanced interpolymer interactions that produce weakly emissive species generally described as having excimer-like character. We have found that poly(phenylene ethynylene)s with fused pendant [2.2.2] ring structures having alkene bridges substituted with two ester groups function to give highly emissive, broad, and red-shifted emission spectra in the solid state. To best understand the origin of this new solid-state emissive species, we have performed photophysical studies of a series of different materials in solution, spin-coated thin films, solid solutions, and Langmuir films. We conclude that the new, red-shifted, emissive species originate from excimers produced by interchain interactions being mediated by the particular [2.2.2] ring system employed. The ability to design structures that can reliably produce highly emissive conjugated polymer excimers offers new opportunities in the emission tailoring of electroluminescence and sensory devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa