Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Diabetes Obes Metab ; 20(11): 2523-2531, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29885045

RESUMO

AIMS: In type 2 diabetes impaired insulin-induced muscle perfusion is thought to contribute to reduced whole-body glucose uptake. In this study, we examined the effects of iloprost, a stable prostacyclin analogue, on insulin-induced muscle capillary recruitment and whole-body glucose uptake. MATERIALS AND METHODS: In a randomized cross-over design, 12 type 2 diabetes patients (age, 55 [46-69] years; BMI, 33.1 [31.0-39] kg/m2 ) underwent two hyperinsulinaemic-euglycaemic clamps, one with and one without simultaneous low-dose iloprost infusion. Contrast-enhanced ultrasonography of the vastus lateralis muscle was performed before and during the clamp. Muscle capillary recruitment was calculated as percentage change in microvascular blood volume (MBV) before and during the clamp. RESULTS: Insulin infusion reduced skeletal muscle MBV by ~50% compared to the fasting state (fasting, 1.77·10-4 [1.54·10-5 -2.44·10-3 ] arbitrary units (AU); hyperinsulinaemia, 6.69·10-5 [2.68·10-6 -5.72·10-4 ] AU; P = 0.050). Infusion of iloprost prevented this insulin-induced skeletal muscle capillary derecruitment, from (-49.5 [-89.5 to 55.3] %) to (8.0 [-68.8 to 306.6] %), for conditions without and with iloprost, respectively. The rate of glucose disappearance (Rd ) did not change significantly during iloprost infusion (17.3 [10.0-40.8] µmol/kg/min) compared with insulin infusion alone (17.6 [9.9-68.7] µmol/kg/min). CONCLUSIONS: Our data suggest that acute improvement in insulin-stimulated muscle perfusion is not an attractive therapeutic approach to bypass cellular resistance to glucose uptake in type 2 diabetes. Whether long-term improvements in insulin-induced muscle perfusion may prove beneficial for glucose disposal remains to be determined.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Iloprosta/administração & dosagem , Insulina/farmacologia , Microcirculação/efeitos dos fármacos , Músculo Esquelético , Idoso , Glicemia/efeitos dos fármacos , Volume Sanguíneo/efeitos dos fármacos , Estudos Cross-Over , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos
2.
Curr Opin Lipidol ; 27(6): 615-622, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27676197

RESUMO

PURPOSE OF REVIEW: The absolute burden of cardiovascular risk remains high despite currently available preventive and therapeutic options. In search for novel therapeutic leads, mounting evidence has linked the gut microbiota as well as their metabolites to the development of cardiometabolic diseases. RECENT FINDINGS: The intestinal microbiota influences the host via different metabolic pathways as inducer of endotoxemia, formation of trimethylamine-N-oxide, production of short chain fatty acids, and is a regulator in intestinal bile acid metabolism. Disruption of the gut microbiome may disturb the homeostasis of the microbial ecosystem to an alternative stable state associated with pathophysiological traits in microbiota and host. However, causality has not been shown yet. SUMMARY: We are just beginning to understand how the gut microbiota influence our cardiometabolic health and various innovative therapeutic options are in the developing (preclinical) phase. This review focuses on the current evidence whether and to what extent the intestinal microbiota are involved in cardiovascular disease and whether this is based on merely association or causal relations.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/microbiologia , Microbiota/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Doenças Cardiovasculares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Miocárdio/metabolismo , Risco
3.
Nutrients ; 16(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931177

RESUMO

CONTEXT/OBJECTIVE: In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS: In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS: Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS: MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.


Assuntos
Biomarcadores , Resistência à Insulina , Síndrome Metabólica , Proteoma , Humanos , Síndrome Metabólica/metabolismo , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Técnica Clamp de Glucose , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Insulina/sangue , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo
4.
Front Med (Lausanne) ; 9: 1077275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544495

RESUMO

The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.

5.
Front Microbiol ; 12: 662159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177842

RESUMO

BACKGROUND: Recent studies demonstrate that a Mediterranean diet has beneficial metabolic effects in metabolic syndrome subjects. Since we have shown that fecal microbiota transplantation (FMT) from lean donors exerts beneficial effects on insulin sensitivity, in the present trial, we investigated the potential synergistic effects on insulin sensitivity of combining a Mediterranean diet with donor FMT in subjects with metabolic syndrome. DESIGN: Twenty-four male subjects with metabolic syndrome were put on a Mediterranean diet and after a 2-week run-in phase, the subjects were randomized to either lean donor (n = 12) or autologous (n = 12) FMT. Changes in the gut microbiota composition and bacterial strain engraftment after the 2-week dietary regimens and 6 weeks post-FMT were the primary endpoints. The secondary objectives were changes in glucose fluxes (both hepatic and peripheral insulin sensitivity), postprandial plasma incretin (GLP-1) levels, subcutaneous adipose tissue inflammation, and plasma metabolites. RESULTS: Consumption of the Mediterranean diet resulted in a reduction in body weight, HOMA-IR, and lipid levels. However, no large synergistic effects of combining the diet with lean donor FMT were seen on the gut microbiota diversity after 6 weeks. Although we did observe changes in specific bacterial species and plasma metabolites, no significant beneficial effects on glucose fluxes, postprandial incretins, or subcutaneous adipose tissue inflammation were detected. CONCLUSIONS: In this small pilot randomized controlled trial, no synergistic beneficial metabolic effects of combining a Mediterranean diet with lean donor FMT on glucose metabolism were achieved. However, we observed engraftment of specific bacterial species. Future trials are warranted to test the combination of other microbial interventions and diets in metabolic syndrome.

6.
Metabolites ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924347

RESUMO

Metabolic syndrome (MetSyn) is an important risk factor for type 2 diabetes and cardiovascular diseases (CVD). This study aimed to find distinct plasma metabolite profiles between insulin-resistant and non-insulin resistant subjects with MetSyn and evaluate if MetSyn metabolite profiles are related to CVD risk and lipid fluxes. In a cross-sectional study, untargeted metabolomics of treatment-naive males with MetSyn (n = 132) were analyzed together with clinical parameters. In a subset of MetSyn participants, CVD risk was calculated using the Framingham score (n = 111), and lipolysis (n = 39) was measured by a two-step hyperinsulinemic euglycemic clamp using [1,1,2,3,3-2H5] glycerol to calculate lipolysis suppression rates. Peripheral insulin resistance was related to fatty acid metabolism and glycerolphosphorylcholine. Interestingly, although insulin resistance is considered to be a risk factor for CVD, we observed that there was little correspondence between metabolites associated with insulin resistance and metabolites associated with CVD risk. The latter mainly belonged to the androgenic steroid, fatty acid, phosphatidylethanolamine, and phophatidylcholine pathways. These data provide new insights into metabolic changes in mild MetSyn pathophysiology and MetSyn CVD risk related to lipid metabolism. Prospective studies may focus on the pathophysiological role of the here-identified biomarkers.

7.
Nutrients ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752028

RESUMO

Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial-metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSyn.


Assuntos
Microbioma Gastrointestinal/fisiologia , Resistência à Insulina/fisiologia , Síndrome Metabólica/sangue , Síndrome Metabólica/microbiologia , Metaboloma , Estudos Transversais , Jejum/sangue , Fezes/microbiologia , Feminino , Técnica Clamp de Glucose , Humanos , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise
8.
Physiol Rep ; 7(16): e14199, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31423751

RESUMO

Intake of a high-fat meal induces a systemic inflammatory response in the postprandial which is augmented in obese subjects. However, the underlying mechanisms of this response have not been fully elucidated. We aimed to assess the effect of gut microbiota modulation on postprandial inflammatory response in lean and obese subjects. Ten lean and ten obese subjects with metabolic syndrome received oral vancomycin 500 mg four times per day for 7 days. Oral high-fat meal tests (50 g fat/m2 body surface area) were performed before and after vancomycin intervention. Gut microbiota composition, leukocyte counts, plasma lipopolysaccharides (LPS), LPS-binding protein (LBP), IL-6 and MCP-1 concentrations and monocyte CCR2 and cytokine expression were determined before and after the high-fat meal. Oral vancomycin treatment resulted in profound changes in gut microbiota composition and significantly decreased bacterial diversity in both groups (phylogenetic diversity pre- versus post-intervention: lean, 56.9 ± 7.8 vs. 21.4 ± 6.6, P < 0.001; obese, 53.9 ± 7.8 vs. 21.0 ± 5.9, P < 0.001). After intervention, fasting plasma LPS significantly increased (lean, median [IQR] 0.81 [0.63-1.45] EU/mL vs. 2.23 [1.33-3.83] EU/mL, P = 0.017; obese, median [IQR] 0.76 [0.45-1.03] EU/mL vs. 1.44 [1.11-4.24], P = 0.014). However, postprandial increases in leukocytes and plasma LPS were unaffected by vancomycin in both groups. Moreover, we found no changes in plasma LBP, IL-6 and MCP-1 or in monocyte CCR2 expression. Despite major vancomycin-induced disruption of the gut microbiota and increased fasting plasma LPS, the postprandial inflammatory phenotype in lean and obese subjects was unaffected in this study.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/metabolismo , Obesidade , Período Pós-Prandial/efeitos dos fármacos , Vancomicina/farmacologia , Adulto , Gorduras na Dieta/efeitos adversos , Humanos , Lipopolissacarídeos/sangue , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Obesidade/metabolismo
9.
Cell Metab ; 26(4): 611-619.e6, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978426

RESUMO

The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as γ-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Resistência à Insulina , Síndrome Metabólica/terapia , Glicemia/análise , Glicemia/metabolismo , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Pessoa de Meia-Idade , Transplante Autólogo/métodos , Transplante Homólogo/métodos , Ácido gama-Aminobutírico/sangue , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa