Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 18(9): 942-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697798

RESUMO

Regenerating pancreatic ß-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of ß-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased ß-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and ß-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in ß-cell regeneration, a role that warrants further investigation in diabetes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Animais , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo
2.
Biomacromolecules ; 25(3): 1439-1447, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38349078

RESUMO

Beta cell replacement therapies utilizing the subcutaneous space have inherent advantages to other sites: the potential for increased accessibility, noninvasive monitoring, and graft extraction. Site prevascularization has been developed to enhance islet survivability in the subcutaneous zone while minimizing potential foreign body immune responses. Molecular communication between the host and prevascularized implant site remains ill-defined. Poly(ethylene oxide)s (PEOs) of various hydrated radii (i.e., ∼11-62 Å) were injected into prevascularized subcutaneous sites in C57BL/6 mice, and the clearance and organ biodistribution were characterized. Prevascularization formed a barrier that confined the molecules compared with the unmodified site. Molecular clearance from the prevascularized site was inversely proportional to the molecular weight. The upper limit in molecular size for entering the vasculature to be cleared was determined to be 35 kDa MW PEO. These findings provide insight into the impact of vascularization on molecular retention at the injection site and the effect of molecular size on the mobility of hydrophilic molecules from the prevascularized site to the host. This information is necessary for optimizing the transplantation site for increasing the beta cell graft survival.


Assuntos
Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Camundongos , Animais , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Tela Subcutânea/irrigação sanguínea , Neovascularização Fisiológica
3.
Xenotransplantation ; 30(2): e12793, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748727

RESUMO

Neonatal porcine islets (NPIs) are a source of islets for xenotransplantation. In the pig, the pancreatic lobes remain separate, thus, when optimizing NPI isolation, the pancreatic lobes included in the pancreatic digest should be specified. These lobes are the duodenal (DL), splenic (SL) and connecting (CL) lobe that correspond to the head, body-tail, and uncinate process of the human pancreas. In this study we are the first to evaluate all three neonatal porcine pancreatic lobes and NPIs isolated from these lobes. We report, a significant difference in endocrine and progenitor cell composition between lobes, and observed pancreatic duct glands (PDG) within the mesenchyme surrounding exocrine ducts in the DL and CL. Following in vitro differentiation, NPIs isolated from each lobe differed significantly in the percent increase of endocrine cells and final cell composition. Compared to other recipients, diabetic immunodeficient mice transplanted with NPIs isolated from the SL demonstrated euglycemic control as early as 4 weeks (p < 0.05) and achieved normoglycemia by 6 weeks post-transplant (p < 0.01). For the first time we report significant differences between the neonatal porcine pancreatic lobes and demonstrate that NPIs from these lobes differ in xenograft function.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Suínos , Humanos , Camundongos , Transplante Heterólogo , Pâncreas , Células-Tronco
4.
Xenotransplantation ; 28(3): e12669, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316848

RESUMO

BACKGROUND: Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS: We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS: Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION: We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Dependovirus , Terapia Genética , Vetores Genéticos , Xenoenxertos , Inflamação , Camundongos , Suínos , Transplante Heterólogo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
5.
Xenotransplantation ; 28(2): e12663, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33230864

RESUMO

BACKGROUND: Genetically modified pigs (GMP) have been developed to alleviate the shortage of donors in human islet transplantation and rejection. In this study, we characterized and compared the islets from GalTKO, GalTKO/hCD46, GalTKO/hCD46/hCD39, and wild-type (WT) neonatal pigs. METHODS: Islets were isolated from GMP and WT pig pancreases that have been packaged with ice pack for at least 24 hours. The difference in gene expression and function of islets were evaluated by microarray analysis and transplantation of islets under the kidney capsule of streptozotocin-induced diabetic immune-deficient mice, respectively. Blood glucose levels of these mice were monitored weekly post-transplantation for >100 days, and islet grafts were collected and evaluated for the presence of endocrine cells. RESULTS: The genes involved in extracellular components, cell adhesion, glucose metabolism, and inflammatory response are differentially expressed between GMP and WT pig islets. Variation in the ability of pig islets in correcting the diabetic state of the mouse recipients appears to be dependent on the pig donor. In addition, prolonged cold ischemia time had a negative effect on the transplant outcome. All normoglycemic mice were able to respond well to glucose challenge despite the initial differences in the ability of islet transplants to reverse their diabetic state. Islet xenografts of normoglycemic mice contained abundant insulin- and glucagon-positive cells. CONCLUSION: The effect of GMP and WT neonatal pig islet transplants on hyperglycemia in mice appears to be dependent on the pig donor, and prolonged cold ischemia time negatively affects the neonatal pig islet transplant outcome.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Isquemia Fria , Camundongos , Pâncreas , Transplante Heterólogo
6.
Xenotransplantation ; 28(6): e12706, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245064

RESUMO

BACKGROUND: Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses. METHODS: To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON). We hypothesized that (PVPON/TA)-encapsulated NPIs will maintain euglycemia and dampen proinflammatory innate immune responses following xenotransplantation. RESULTS: (PVPON/TA)-encapsulated NPIs were viable and glucose-responsive similar to non-encapsulated NPIs. Transplantation of (PVPON/TA)-encapsulated NPIs into hyperglycemic C57BL/6.Rag or NOD.Rag mice restored euglycemia, exhibited glucose tolerance, and maintained islet-specific transcription factor levels similar to non-encapsulated NPIs. Gene expression analysis of (PVPON/TA)-encapsulated grafts post-transplantation displayed reduced proinflammatory Ccl5, Cxcl10, Tnf, and Stat1 while enhancing alternatively activated macrophage Retnla, Arg1, and Stat6 mRNA accumulation compared with controls. Flow cytometry analysis demonstrated significantly reduced innate immune infiltration, MHC-II, co-stimulatory molecule, and TNF expression with concomitant increases in arginase-1+ macrophages and dendritic cells. Similar alterations in immune responses were observed following xenotransplantation into immunocompetent NOD mice. CONCLUSION: Our data suggest that (PVPON/TA) encapsulation of NPIs is an effective strategy to decrease inflammatory innate immune signals involved in NPI xenograft responses through STAT1/6 modulation without compromising islet function.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Suínos , Taninos , Transplante Heterólogo
7.
Am J Transplant ; 20(3): 714-725, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31650674

RESUMO

The broad application of ß cell transplantation for type 1 diabetes is hindered by the requisite of lifelong systemic immunosuppression. This study examines the utility of localized islet graft drug delivery to subvert the inflammatory and adaptive immune responses. Herein, we have developed and characterized dexamethasone (Dex) eluting Food and Drug Administration-approved micro-Poly(lactic-co-glycolic acid) micelles and examined their efficacy in a fully major histocompatibility complex-mismatch murine islet allograft model. A clinically relevant dose of 46.6 ± 2.8 µg Dex per graft was confirmed when 2 mg of micelles was implemented. Dex-micelles + CTLA-4-Ig (n = 10) resulted in prolonged allograft function with 80% of the recipients demonstrating insulin independence for 60 days posttransplant compared to 40% in empty micelles + CTLA-4-Ig recipients (n = 10, P = .06). Recipients of this combination therapy (n = 8) demonstrated superior glucose tolerance profiles, compared to empty micelles + CTLA-4-Ig recipients (n = 4, P < .05), and significantly reduced localized intragraft proinflammatory cytokine expression. Histologically, increased insulin positive and FOXP3+ T cells were observed in Dex-micelles + CTLA-4-Ig grafts compared to empty micelles + CTLA-4-Ig grafts (P < .01 and P < .05, respectively). Localized drug delivery via micelles elution has the potential to alter the inflammatory environment, enhances allograft survival, and may be an important adjuvant approach to improve clinical islet transplantation outcomes.


Assuntos
Transplante das Ilhotas Pancreáticas , Micelas , Aloenxertos , Animais , Dexametasona , Sobrevivência de Enxerto , Camundongos , Camundongos Endogâmicos BALB C
8.
Xenotransplantation ; 27(4): e12575, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31814191

RESUMO

BACKGROUND: Neonatal porcine islets (NPIs) are a promising tissue source for clinical islet xenotransplantation. To facilitate graft monitoring and recovery if needed, an extra-hepatic transplant site would be optimal. In addition, islet transplantation into the portal vein has been associated with life-threatening intraperitoneal bleeding, portal vein thrombosis, hepatic steatosis, and loss of islet graft function. Although it is hypoxic, the subcutaneous space is a potential extra-hepatic location for clinical islet transplantation. In this study, we explore the benefits of fibrin scaffolds in enhancing the engraftment and long-term function of NPI grafts in this ectopic site. METHODS: Diabetic immune-compromised mice were transplanted with 5000 NPIs under the kidney capsule (KC), and subcutaneously with or without fibrin (SC + F, SC, respectively). All mice were monitored for reversal of hyperglycemia and long-term metabolic function. RESULTS: All mice transplanted with NPI under the KC or SC + F (12/12 and 17/17, respectively) achieved normal fasting blood glucose levels between 5 and 22 weeks post-transplantation and displayed normal glucose tolerance during an intraperitoneal glucose tolerance test. In contrast, NPIs transplanted SC with no fibrin (n = 7) failed to obtain normoglycemia. CONCLUSION: Fibrin matrix facilitates engraftment of NPIs in the subcutaneous site of diabetic mice. These data support further investigation of the subcutaneous site for clinical islet xenotransplantation.


Assuntos
Diabetes Mellitus Experimental , Fibrina , Transplante das Ilhotas Pancreáticas , Animais , Glicemia , Diabetes Mellitus Experimental/cirurgia , Sobrevivência de Enxerto , Ilhotas Pancreáticas , Camundongos , Suínos , Transplante Heterólogo
9.
Xenotransplantation ; 27(4): e12581, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930606

RESUMO

BACKGROUND: Cell transplantation has been widely recognized as a curative treatment strategy for variety of diseases including type I diabetes (T1D). Broader patient inclusion for this therapeutic option is restricted by a limited supply of healthy human islet donors and significant loss of islets immediately postintrahepatic transplant due to immune activation. Neonatal porcine islets (NPIs) are a potential ubiquitous ß-cell source for treating T1D. Mesenchymal stem cells (MSCs) have the inherent capacity to secrete immunoregulatory, anti-inflammatory, and proangiogenic factors and, thus, have the potential to improve islet engraftment, survival, and function. METHODS: Herein, we assessed the effect of human adipose-derived MSCs (AdMSCs) on NPI metabolic outcomes in diabetic mice when co-transplanted within the prevascularized subcutaneous deviceless (DL) space or kidney capsule (KC). Graft function has been evaluated by weekly blood glucose, stimulated porcine insulin, glucose tolerance, and total cellular graft insulin content. RESULTS: Compared with NPI alone, co-transplantation of NPIs and AdMSCs resulted in significantly earlier normoglycemia (*P < .05), improved glucose tolerance (*P < .05), superior stimulated serum porcine insulin (**P < .01), and increased graft insulin content (*P < .05) in the DL site and not the KC. CONCLUSIONS: Thus, our study demonstrates that co-transplantation of human AdMSCs with NPIs is an effective tactic to augment islet xenograft function in a clinically relevant extrahepatic site.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Animais , Glicemia , Diabetes Mellitus Experimental/cirurgia , Xenoenxertos , Humanos , Insulina , Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Camundongos , Suínos , Transplante Heterólogo
10.
Xenotransplantation ; 25(6): e12432, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052287

RESUMO

BACKGROUND: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, ß-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS: Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, ß-cell percentage, and ß-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS: The oxygen demand, membrane integrity, ß-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.


Assuntos
Sobrevivência de Enxerto/imunologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Animais Recém-Nascidos , Diabetes Mellitus Experimental/terapia , Rejeição de Enxerto/imunologia , Células Secretoras de Insulina/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas/imunologia , Pâncreas/metabolismo , Suínos , Transcriptoma/imunologia , Transplante Heterólogo/métodos
11.
Curr Diab Rep ; 17(3): 14, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28271465

RESUMO

PURPOSE OF REVIEW: Diabetes is medical and social burden affecting millions around the world. Despite intensive therapy, insulin fails to maintain adequate glucose homeostasis and often results in episodes of hypoglycemic unawareness. Islet transplantation is a propitious replacement therapy, and incremental improvements in islet isolation and immunosuppressive drugs have made this procedure a feasible option. Shortage of donors, graft loss, and toxic immunosuppressive agents are few of many hurdles against making human allogenic islet transplantation a routine procedure. RECENT FINDINGS: Xenografts-especially pig islets-offer a logical alternative source for islets. Current preclinical studies have revealed problems such as optimal islet source, zoonosis, and immune rejection. These issues are slowing clinical application. Genetically modified pigs, encapsulation devices, and new immune-suppressive regimens can confer graft protection. In addition, extrahepatic transplant sites are showing promising results. Notwithstanding few approved clinical human trials, and available data from non-human primates, recent reports indicate that porcine islets are closer to be the promising solution to cure diabetes.


Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Transplante Heterólogo/métodos , Animais , Sobrevivência de Enxerto , Humanos , Imunossupressores/farmacologia , Suínos , Doadores de Tecidos
12.
Cryobiology ; 75: 68-74, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192075

RESUMO

High concentrations of cryoprotective agents are required for cryopreservation techniques such as vitrification. Glycerol is a common cryoprotective agent used in cryopreservation protocols but this agent is toxic at high concentrations. This work is an attempt to mitigate the toxic effects of high concentrations of glycerol on intact chondrocytes in human knee articular cartilage from total knee arthroplasty patients by simultaneous exposure to glycerol and a variety of additive compounds. The resulting cell viability in the cartilage samples as measured by membrane integrity staining showed that, in at least one concentration or in combination, all of the tested additive compounds (tetramethylpyrazine, ascorbic acid, chondroitin sulphate, glucosamine sulphate) were able to reduce the deleterious effects of glycerol exposure when examination of membrane integrity took place on a delayed time frame. The use of additive compounds to reduce cryoprotectant toxicity in articular cartilage may help improve cell recovery after cryopreservation.


Assuntos
Condrócitos , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/toxicidade , Glicerol/toxicidade , Idoso , Idoso de 80 Anos ou mais , Ácido Ascórbico/farmacologia , Cartilagem Articular/citologia , Sobrevivência Celular/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Glucosamina/farmacologia , Humanos , Pessoa de Meia-Idade , Pirazinas/farmacologia , Vitrificação
14.
Diabetologia ; 58(7): 1503-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25930156

RESUMO

AIMS/HYPOTHESIS: There are potential advantages to the low-temperature (-196 °C) banking of isolated islets, including the maintenance of viable islets for future research. We therefore assessed the in vitro and in vivo function of islets cryopreserved for nearly 20 years. METHODS: Human islets were cryopreserved from 1991 to 2001 and thawed between 2012 and 2014. These were characterised by immunostaining, patch-clamp electrophysiology, insulin secretion, transcriptome analysis and transplantation into a streptozotocin (STZ)-induced mouse model of diabetes. RESULTS: The cryopreservation time was 17.6 ± 0.4 years (n = 43). The thawed islets stained positive with dithizone, contained insulin-positive and glucagon-positive cells, and displayed levels of apoptosis and transcriptome profiles similar to those of freshly isolated islets, although their insulin content was lower. The cryopreserved beta cells possessed ion channels and exocytotic responses identical to those of freshly isolated beta cells. Cells from a subset of five donors demonstrated similar perifusion insulin secretion profiles pre- and post-cryopreservation. The transplantation of cryopreserved islets into the diabetic mice improved their glucose tolerance but did not completely normalise their blood glucose levels. Circulating human insulin and insulin-positive grafts were detectable at 10 weeks post-transplantation. CONCLUSIONS/INTERPRETATION: We have demonstrated the potential for long-term banking of human islets for research, which could enable the use of tissue from a large number of donors with future technologies to gain new insight into diabetes.


Assuntos
Criopreservação , Ilhotas Pancreáticas/fisiologia , Bancos de Tecidos , Adulto , Animais , Diabetes Mellitus Experimental/terapia , Exocitose/fisiologia , Feminino , Proteínas de Homeodomínio/genética , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Canais Iônicos/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Transcriptoma/genética
15.
Xenotransplantation ; 22(5): 336-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381492

RESUMO

The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.


Assuntos
Ensaios Clínicos como Assunto/ética , Diabetes Mellitus Tipo 1/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Transplante Heterólogo/ética , Animais , Humanos , Transplante das Ilhotas Pancreáticas/ética , Suínos
16.
Biol Reprod ; 90(1): 13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285718

RESUMO

Conventionally, it was believed that Sertoli cells (SC) stopped proliferating at puberty and became terminally differentiated quiescent cells. However, recent studies have challenged that dogma. In this study, we transplanted nondividing SC isolated from 23- to 27-day-old postpubertal rats transduced with a recombinant adenoviral vector (containing furin-modified human proinsulin cDNA) into diabetic severe combined immunodeficiency mice. Immunostaining the grafts for cell proliferation markers, proliferating cell nuclear antigen (PCNA) and MKI67, revealed that transplanted SC within the grafts were proliferating. Possible causes for resumption of proliferation of SC could be viral transduction, cell isolation and culture, higher abdominal temperature at the transplant site, and/or transplantation. To test for these possible causes, double- immunofluorescence staining was performed for GATA4 (SC marker) and MKI67. None of the SC were positive for MKI67 in tissue collected during SC isolation and culture or at higher temperature. However, nontransduced SC stained positive for MKI67 after transplantation into rats, suggesting viral transduction was not a key factor for induction of SC proliferation. Interestingly, resumption in proliferative ability of nondividing SC was temporary, as SC stopped proliferating within 14 days of transplantation and did not proliferate thereafter. Quantification of 5-bromo-2'-deoxyuridine-labeled SC demonstrated that 7%-9% of the total transplanted SC were proliferating in the grafts. These data indicate for the first time that nondividing SC resumed proliferation after transplantation and further validate previous findings that SC are not terminally differentiated. Hence, transplantation of SC could provide a useful model with which to study the regulation of SC proliferation in vivo.


Assuntos
Proliferação de Células , Células de Sertoli/citologia , Células de Sertoli/fisiologia , Células de Sertoli/transplante , Maturidade Sexual/fisiologia , Animais , Divisão Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Endogâmicos Lew , Ratos Endogâmicos WF
17.
Nat Med ; 12(3): 304-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501570

RESUMO

We evaluated the ability of neonatal porcine islets to engraft and restore glucose control in pancreatectomized rhesus macaques. Although porcine islets transplanted into nonimmunosuppressed macaques were rapidly rejected by a process consistent with cellular rejection, recipients treated with a CD28-CD154 costimulation blockade regimen achieved sustained insulin independence (median survival, >140 days) without evidence of porcine endogenous retrovirus dissemination. Thus, neonatal porcine islets represent a promising solution to the crucial supply problem in clinical islet transplantation.


Assuntos
Sobrevivência de Enxerto/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Macaca/imunologia , Suínos , Animais , Animais Recém-Nascidos , Terapia Baseada em Transplante de Células e Tecidos , Rejeição de Enxerto/imunologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/imunologia , Pancreatectomia , Suínos/imunologia , Fatores de Tempo , Transplante Heterólogo/imunologia
18.
Pharmaceutics ; 15(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37111623

RESUMO

Beta cell replacement therapies can restore glycemic control to select individuals living with type 1 diabetes. However, the obligation of lifelong immunosuppression restricts cell therapies from replacing exogenous insulin administration. Encapsulation strategies can reduce the inherent adaptive immune response; however, few are successfully translated into clinical testing. Herein, we evaluated if the conformal coating of islets with poly(N-vinylpyrrolidone) (PVPON) and tannic acid (TA) (PVPON/TA) could preserve murine and human islet function while conferring islet allograft protection. In vitro function was evaluated using static glucose-stimulated insulin secretion, oxygen consumption rates, and islet membrane integrity. In vivo function was evaluated by transplanting human islets into diabetic immunodeficient B6.129S7-Rag1tm1Mom/J (Rag-/-) mice. The immunoprotective capacity of the PVPON/TA-coating was assessed by transplanting BALB/c islets into diabetic C57BL/6 mice. Graft function was evaluated by non-fasting blood glucose measurements and glucose tolerance testing. Both coated and non-coated murine and human islets exhibited indistinguishable in vitro potency. PVPON/TA-coated and control human islets were able to restore euglycemia post-transplant. The PVPON/TA-coating as monotherapy and adjuvant to systemic immunosuppression reduced intragraft inflammation and delayed murine allograft rejection. This study demonstrates that PVPON/TA-coated islets may be clinically relevant as they retain their in vitro and in vivo function while modulating post-transplant immune responses.

19.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765170

RESUMO

One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone (p < 0.05). Over 50% (6/11) of recipients receiving CsA microparticles and short-term cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4-Ig) therapy displayed prolonged allograft survival for 214 days, compared to 25% (2/8) receiving CTLA4-Ig alone. CsA microparticles alone and CsA microparticles + CTLA4-Ig islet allografts exhibited reduced T-cell (CD4+ and CD8+ cells, p < 0.001) and macrophage (CD68+ cells, p < 0.001) infiltration compared to islets alone. We observed the reduced mRNA expression of proinflammatory cytokines (IL-6, IL-10, INF-γ, and TNF-α; p < 0.05) and chemokines (CCL2, CCL5, CCL22, and CXCL10; p < 0.05) in CsA microparticles + CTLA4-Ig allografts compared to islets alone. Long-term islet allografts contained insulin+ and intra-graft FoxP3+ T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets.

20.
Polymers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335450

RESUMO

The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p < 0.05, ** p < 0.01, respectively). PLGA scaffolds exhibited superior glucose tolerance (* p < 0.05) and serum porcine insulin secretion (* p < 0.05) compared to PCL scaffolds. Functionalized PLGA + G scaffold recipients exhibited higher total cellular insulin contents compared to PLGA-only recipients (* p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa