Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369050

RESUMO

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos B , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Receptores de Células Precursoras de Linfócitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Reação em Cadeia da Polimerase Multiplex , Subunidade p50 de NF-kappa B/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Proteína Quinase C beta/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Taxa de Sobrevida , Transativadores/genética
2.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036970

RESUMO

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Leucemia , Humanos , Quinase 3 da Glicogênio Sintase/metabolismo , Linhagem Celular Tumoral , Leucemia/tratamento farmacológico , Leucemia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
3.
J Proteome Res ; 23(7): 2495-2504, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38829961

RESUMO

Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes. We find that AML with inv(16) has the lowest overall ASNS expression. While AML with deletion 7/7q had ASNS levels slightly lower than those of AML without deletion 7/7q, this observation was not significant. Low ASNS expression correlated with improved overall survival (46 versus 54 weeks, respectively, p = 0.011), whereas higher ASNS levels were associated with better response to venetoclax-based therapy. Protein correlation analysis demonstrated association between ASNS and proteins involved in methylation and DNA repair. In conclusion, while ASNS expression was not lower in patients with deletion 7/7q as initially predicted, ASNS levels were highly variable across AML patients. Further studies are needed to assess whether patients with low ASNS expression are susceptible to asparaginase-based therapy due to their inability to augment compensatory ASNS expression upon asparagine depletion.


Assuntos
Aspartato-Amônia Ligase , Leucemia Mieloide Aguda , Proteômica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Feminino , Proteômica/métodos , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Deleção Cromossômica , Análise Serial de Proteínas/métodos , Asparaginase/uso terapêutico , Asparaginase/genética , Cromossomos Humanos Par 7/genética , Adulto Jovem , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida
4.
Blood ; 139(6): 907-921, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34601571

RESUMO

The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Mepesuccinato de Omacetaxina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores da Síntese de Proteínas/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
5.
Nature ; 558(7711): E5, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849140

RESUMO

In Fig. 3c of this Letter, the the effects of CRISPR-Cas9-mediated deletion of NR3C1, TXNIP and CNR2 in patient-derived B-lineage leukaemia cells were shown. For curves depicting NR3C1 (left graph), data s for TXNIP (middle graph) were inadvertently plotted. This figure has been corrected online, and the original Fig. 3c is shown as Supplementary Information to this Amendment for transparency. The error does not affect the conclusions of the Letter. In addition, Source Data files have been added for the Figs. 1-4 and Extended Data Figs. 1-10 of the original Letter.

6.
Blood ; 137(8): 1050-1060, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32959058

RESUMO

Bortezomib (BTZ) was recently evaluated in a randomized phase 3 clinical trial by the Children's Oncology Group (COG) that compared standard chemotherapy (cytarabine, daunorubicin, and etoposide [ADE]) vs standard therapy with BTZ (ADEB) for de novo pediatric acute myeloid leukemia (AML). Although the study concluded that BTZ did not improve outcome overall, we examined patient subgroups benefiting from BTZ-containing chemotherapy using proteomic analyses. The proteasome inhibitor BTZ disrupts protein homeostasis and activates cytoprotective heat shock responses. Total heat shock factor 1 (HSF1) and phosphorylated HSF1 (HSF1-pSer326) were measured in leukemic cells from 483 pediatric patients using reverse phase protein arrays. HSF1-pSer326 phosphorylation was significantly lower in pediatric AML compared with CD34+ nonmalignant cells. We identified a strong correlation between HSF1-pSer326 expression and BTZ sensitivity. BTZ significantly improved outcome of patients with low-HSF1-pSer326 with a 5-year event-free survival of 44% (ADE) vs 67% for low-HSF1-pSer326 treated with ADEB (P = .019). To determine the effect of HSF1 expression on BTZ potency in vitro, cell viability with HSF1 gene variants that mimicked phosphorylated (S326A) and nonphosphorylated (S326E) HSF1-pSer326 were examined. Those with increased HSF1 phosphorylation showed clear resistance to BTZ vs those with wild-type or reduced HSF1-phosphorylation. We hypothesize that HSF1-pSer326 expression could identify patients who benefit from BTZ-containing chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Fatores de Transcrição de Choque Térmico/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Masculino , Mutação Puntual , Prognóstico , Transcriptoma
7.
Blood ; 138(23): 2383-2395, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280258

RESUMO

Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase/uso terapêutico , Piperidinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adenina/farmacologia , Adenina/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Asparaginase/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Piperidinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Am J Hematol ; 98(8): 1196-1203, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183966

RESUMO

Reverse transcription polymerase chain reaction (RT-PCR) for BCR::ABL1 is the most common and widely accepted method of measurable residual disease (MRD) assessment in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL); however, RT-PCR may not be an optimal measure of MRD in many cases of Ph+ ALL. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay (sensitivity of 10-6 ) and its correlation with RT-PCR for BCR::ABL1 in patients with Ph+ ALL. Overall, 32% of patients had a discordance between MRD assessment by RT-PCR and NGS, and 31% of patients who achieved NGS MRD negativity were PCR+ at the same timepoint. Among eight patients with long-term detectable BCR::ABL1 by PCR, six were PCR+/NGS-. These patients generally had stable PCR levels that persisted despite therapeutic interventions, and none subsequently relapsed; in contrast, patients who were PCR+/NGS+ had more variable PCR values that responded to therapeutic intervention. In a separate cohort of prospectively collected clinical samples, 11 of 65 patients (17%) with Ph+ ALL who achieved NGS MRD negativity had detectable BCR::ABL1 by PCR, and none of these patients relapsed. Relapse-free survival and overall survival were similar in patients who were PCR+/NGS- and PCR-/NGS-, suggesting that PCR for BCR::ABL1 did not provide additional prognostic information in patients who achieved NGS MRD negativity. NGS-based assessment of MRD is prognostic in Ph+ ALL and identifies patients with low-level detectable BCR::ABL1 who are unlikely to relapse nor to benefit from therapeutic interventions.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteínas de Fusão bcr-abl/genética , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Sequenciamento de Nucleotídeos em Larga Escala , Recidiva
9.
Nature ; 542(7642): 479-483, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28192788

RESUMO

B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.


Assuntos
Linfócitos B/metabolismo , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Transporte/agonistas , Proteínas de Transporte/metabolismo , Morte Celular , Imunoprecipitação da Cromatina , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Fator de Transcrição Ikaros/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX5/deficiência , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptores de Glucocorticoides/metabolismo , Análise de Sequência de RNA
10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982555

RESUMO

Proteomic DNA Damage Repair (DDR) expression patterns in Chronic Lymphocytic Leukemia were characterized by quantifying and clustering 24 total and phosphorylated DDR proteins. Overall, three protein expression patterns (C1-C3) were identified and were associated as an independent predictor of distinct patient overall survival outcomes. Patients within clusters C1 and C2 had poorer survival outcomes and responses to fludarabine, cyclophosphamide, and rituxan chemotherapy compared to patients within cluster C3. However, DDR protein expression patterns were not prognostic in more modern therapies with BCL2 inhibitors or a BTK/PI3K inhibitor. Individually, nine of the DDR proteins were prognostic for predicting overall survival and/or time to first treatment. When looking for other proteins that may be associated with or influenced by DDR expression patterns, our differential expression analysis found that cell cycle and adhesion proteins were lower in clusters compared to normal CD19 controls. In addition, cluster C3 had a lower expression of MAPK proteins compared to the poor prognostic patient clusters thus implying a potential regulatory connection between adhesion, cell cycle, MAPK, and DDR signaling in CLL. Thus, assessing the proteomic expression of DNA damage proteins in CLL provided novel insights for deciphering influences on patient outcomes and expanded our understanding of the potential complexities and effects of DDR cell signaling.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteômica , Dano ao DNA , Receptores com Domínio Discoidina/genética
11.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982970

RESUMO

The survival of malignant leukemic cells is dependent on DNA damage repair (DDR) signaling. Reverse Phase Protein Array (RPPA) data sets were assembled using diagnostic samples from 810 adult and 500 pediatric acute myelogenous leukemia (AML) patients and were probed with 412 and 296 strictly validated antibodies, respectively, including those detecting the expression of proteins directly involved in DDR. Unbiased hierarchical clustering identified strong recurrent DDR protein expression patterns in both adult and pediatric AML. Globally, DDR expression was associated with gene mutational statuses and was prognostic for outcomes including overall survival (OS), relapse rate, and remission duration (RD). In adult patients, seven DDR proteins were individually prognostic for either RD or OS. When DDR proteins were analyzed together with DDR-related proteins operating in diverse cellular signaling pathways, these expanded groupings were also highly prognostic for OS. Analysis of patients treated with either conventional chemotherapy or venetoclax combined with a hypomethylating agent revealed protein clusters that differentially predicted favorable from unfavorable prognoses within each therapy cohort. Collectively, this investigation provides insight into variable DDR pathway activation in AML and may help direct future individualized DDR-targeted therapies in AML patients.


Assuntos
Leucemia Mieloide Aguda , Humanos , Adulto , Criança , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Reparo do DNA/genética , Dano ao DNA , Receptores com Domínio Discoidina/genética
12.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982537

RESUMO

DNA damage response (DNADR) recognition and repair (DDR) pathways affect carcinogenesis and therapy responsiveness in cancers, including leukemia. We measured protein expression levels of 16 DNADR and DDR proteins using the Reverse Phase Protein Array methodology in acute myeloid (AML) (n = 1310), T-cell acute lymphoblastic leukemia (T-ALL) (n = 361) and chronic lymphocytic leukemia (CLL) (n = 795) cases. Clustering analysis identified five protein expression clusters; three were unique compared to normal CD34+ cells. Individual protein expression differed by disease for 14/16 proteins, with five highest in CLL and nine in T-ALL, and by age in T-ALL and AML (six and eleven proteins, respectively), but not CLL (n = 0). Most (96%) of the CLL cases clustered in one cluster; the other 4% were characterized by higher frequencies of deletion 13q and 17p, and fared poorly (p < 0.001). T-ALL predominated in C1 and AML in C5, but both occurred in all four acute-dominated clusters. Protein clusters showed similar implications for survival and remission duration in pediatric and adult T-ALL and AML populations, with C5 doing best in all. In summary, DNADR and DDR protein expression was abnormal in leukemia and formed recurrent clusters that were shared across the leukemias with shared prognostic implications across diseases, and individual proteins showed age- and disease-related differences.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Adulto , Criança , Leucemia Mieloide Aguda/genética , Análise Serial de Proteínas , Leucemia Linfocítica Crônica de Células B/genética , Proteínas/genética , Doença Crônica , Dano ao DNA/genética
13.
Haematologica ; 107(10): 2329-2343, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021602

RESUMO

Pediatric acute myeloid leukemia (AML) remains a fatal disease for at least 30% of patients, stressing the need for improved therapies and better risk stratification. As proteins are the unifying feature of (epi)genetic and environmental alterations, and are often targeted by novel chemotherapeutic agents, we studied the proteomic landscape of pediatric AML. Protein expression and activation levels were measured in 500 bulk leukemic patients' samples and 30 control CD34+ cell samples, using reverse phase protein arrays with 296 strictly validated antibodies. The multistep MetaGalaxy analysis methodology was applied and identified nine protein expression signatures (PrSIG), based on strong recurrent protein expression patterns. PrSIG were associated with cytogenetics and mutational state, and with favorable or unfavorable prognosis. Analysis based on treatment (i.e., ADE vs. ADE plus bortezomib) identified three PrSIG that did better with ADE plus bortezomib than with ADE alone. When PrSIG were studied in the context of cytogenetic risk groups, PrSIG were independently prognostic after multivariate analysis, suggesting a potential value for proteomics in combination with current classification systems. Proteins with universally increased (n=7) or decreased (n=17) expression were observed across PrSIG. Certain proteins significantly differentially expressed from normal could be identified, forming a hypothetical platform for personalized medicine.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Bortezomib , Criança , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Prognóstico , Análise Serial de Proteínas , Proteínas
14.
Expert Rev Proteomics ; 18(12): 1087-1097, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965151

RESUMO

INTRODUCTION: Acute leukemia results from a series of mutational events that alter cell growth and proliferation. Mutations result in protein changes that orchestrate growth alterations characteristic of leukemia. Proteomics is a methodology appropriate for study of protein changes found in leukemia. The high-throughput reverse phase protein array (RPPA) technology is particularly well-suited for the assessment of protein changes in samples derived from clinical trials. AREAS COVERED: This review discusses the technical, methodological, and analytical issues related to the successful development of acute leukemia RPPAs. EXPERT COMMENTARY: To obtain representative protein sample lysates, samples should be prepared from freshly collected blood or bone marrow material. Variables such as sample shipment, transit time, and holding temperature only have minimal effects on protein expression. CellSave preservation tubes are preferred for cells collected after exposure to chemotherapy, and incorporation of standardized guidelines for antibody validation is recommended. A more systematic biological approach to analyze protein expression is desired, searching for recurrent patterns of protein expression that allow classification of patients into risk groups, or groups of patients that may be treated similarly. Comparing RPPA protein analysis between cell lines and primary samples shows that cell lines are not representative of patient proteomic patterns.


Assuntos
Leucemia Mieloide Aguda , Análise Serial de Proteínas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Processamento de Proteína Pós-Traducional , Proteínas , Proteômica
15.
Blood ; 134(1): 59-73, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023702

RESUMO

RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Leucemia Mieloide Aguda/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Técnicas de Silenciamento de Genes , Mutação em Linhagem Germinativa , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos
16.
Am J Hematol ; 96(3): 282-291, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264443

RESUMO

Hypomethylating agents (HMA) with venetoclax is a new standard for older/unfit patients with acute myeloid leukemia (AML). However, it is unknown how HMA with venetoclax compare to intensive chemotherapy (IC) in patients who are "fit" or "unfit" for IC. We compared outcomes of older patients with newly diagnosed AML receiving 10-day decitabine with venetoclax (DEC10-VEN) vs IC. DEC10-VEN consisted of daily venetoclax with decitabine 20 mg/m2 for 10 days for induction and decitabine for 5 days as consolidation. The IC cohort received regimens containing cytarabine ≥1 g/m2 /d. A validated treatment-related mortality score (TRMS) was used to classify patients at high-risk or low-risk for TRM with IC. Propensity scores were used to match patients to minimize bias. Median age of the DEC10-VEN cohort (n = 85) was 72 years (range 63-89) and 28% patients were at high-risk of TRM with IC. The comparator IC group (n = 85) matched closely in terms of baseline characteristics. DEC10-VEN was associated with significantly higher CR/CRi compared to IC (81% vs 52%, P < .001), and lower rate of relapse (34% vs 56%, P = .01), 30-day mortality (1% vs 24%, P < .01), and longer overall survival (OS; 12.4 vs 4.5 months, HR = 0.48, 95%CI 0.29-0.79, P < .01). In patients at both at high-risk and low-risk of TRM, DEC10-VEN showed significantly higher CR/CRi, lower 30-day mortality, and longer OS compared to IC. Patients at both high-risk and low-risk of TRM had comparable outcomes with DEC10-VEN. In conclusion, DEC10-VEN offers better outcomes compared to intensive chemotherapy in older patients with newly diagnosed AML, particularly in those at high-risk of TRM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Ensaios Clínicos Fase II como Assunto/estatística & dados numéricos , Terapia Combinada , Quimioterapia de Consolidação , Citarabina/administração & dosagem , Decitabina/administração & dosagem , Decitabina/efeitos adversos , Esquema de Medicação , Avaliação de Medicamentos , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/cirurgia , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Pontuação de Propensão , Recidiva , Indução de Remissão , Estudos Retrospectivos , Risco , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos
17.
Expert Rev Proteomics ; 17(1): 1-10, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945303

RESUMO

Introduction: The biological heterogeneity of acute myeloid leukemia (AML) complicates personalized medicine. Individual prognosis is typically based on the presence of chromosomal and genetic lesions. Nevertheless, these classifications often lack a priori information about response to therapy. Since the protein expression landscape reflects the functional activity state of cells, we hypothesize that analyzing this can be used for the identification of protein activity markers to provide better risk stratification as well as may provide targeted therapeutic guidance in AML.Areas covered: Herein, we review recently new adopted drugs in the treatment for AML and discuss how quantitative proteomic techniques may contribute to better therapeutic selection in AML.Expert commentary: The net functional state of the cell is defined by the activity of protein within all the pathways that are active in the cell. Recognition of the proteomic profile of the leukemic blast could, therefore, complement current classification systems by providing a better a priori description of what pathways are important within a cell as a guide to the selection of therapy for the patient.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Proteômica/métodos , Animais , Antineoplásicos/uso terapêutico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Espectrometria de Massas/métodos , Proteoma/genética , Proteoma/metabolismo , Pesquisa Translacional Biomédica/métodos
18.
Biochim Biophys Acta Mol Cell Res ; 1865(7): 959-969, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29655803

RESUMO

In acute myeloid leukemia (AML), high Galectin 3 (LGALS3) expression is associated with poor prognosis. The role of LGALS3 derived from mesenchymal stromal cells (MSC) in the AML microenvironment is unclear; however, we have recently found high LGALS3 expression in MSC derived from AML patients is associated with relapse. In this study, we used reverse phase protein analysis (RPPA) to correlate LGALS3 expression in AML MSC with 119 other proteins including variants of these proteins such as phosphorylated forms or cleaved forms to identify biologically relevant pathways. RPPA revealed that LGALS3 protein was positively correlated with expression of thirteen proteins including MYC, phosphorylated beta-Catenin (p-CTNNB1), and AKT2 and negatively correlated with expression of six proteins including integrin beta 3 (ITGB3). String analysis revealed that proteins positively correlated with LGALS3 showed strong interconnectivity. Consistent with the RPPA results, LGALS3 suppression by shRNA in MSC resulted in decreased MYC and AKT expression while ITGB3 was induced. In co-culture, the ability of AML cell to adhere to MSC LGALS3 shRNA transductants was reduced compared to AML cell adhesion to MSC control shRNA transductants. Finally, use of novel specific LGALS3 inhibitor CBP.001 in co-culture of AML cells with MSC reduced viable leukemia cell populations with induced apoptosis and augmented the chemotherapeutic effect of AraC. In summary, the current study demonstrates that MSC-derived LGALS3 may be critical for important biological pathways for MSC homeostasis and for regulating AML cell localization and survival in the leukemia microenvironmental niche.


Assuntos
Galectina 3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regulação para Cima , Proteínas Sanguíneas , Técnicas de Cocultura , Galectinas , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Fosforilação , Mapas de Interação de Proteínas , Proteômica , Células THP-1 , Células Tumorais Cultivadas , Microambiente Tumoral
19.
Blood ; 129(14): 1958-1968, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28143883

RESUMO

FZR1 (fizzy-related protein homolog; also known as CDH1 [cell division cycle 20 related 1]) functions in the cell cycle as a specific activator of anaphase-promoting complex or cyclosome ubiquitin ligase, regulating late mitosis, G1 phase, and activation of the G2-M checkpoint. FZR1 has been implicated as both a tumor suppressor and oncoprotein, and its precise contribution to carcinogenesis remains unclear. Here, we examined the role of FZR1 in tumorigenesis and cancer therapy by analyzing tumor models and patient specimens. In an Fzr1 gene-trap mouse model of B-cell acute lymphoblastic leukemia (B-ALL), mice with Fzr1-deficient B-ALL survived longer than those with Fzr1-intact disease, and sensitivity of Fzr1-deficient B-ALL cells to DNA damage appeared increased. Consistently, conditional knockdown of FZR1 sensitized human B-ALL cell lines to DNA damage-induced cell death. Moreover, multivariate analyses of reverse-phase protein array of B-ALL specimens from newly diagnosed B-ALL patients determined that a low FZR1 protein expression level was an independent predictor of a longer remission duration. The clinical benefit of a low FZR1 expression level at diagnosis was no longer apparent in patients with relapsed B-ALL. Consistent with this result, secondary and tertiary mouse recipients of Fzr1-deficient B-ALL cells developed more progressive and radiation-resistant disease than those receiving Fzr1-intact B-ALL cells, indicating that prolonged inactivation of Fzr1 promotes the development of resistant clones. Our results suggest that reduction of FZR1 increases therapeutic sensitivity of B-ALL and that transient rather than tonic inhibition of FZR1 may be a therapeutic strategy.


Assuntos
Proteínas Cdh1 , Dano ao DNA , Regulação Leucêmica da Expressão Gênica , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animais , Proteínas Cdh1/biossíntese , Proteínas Cdh1/genética , Morte Celular , Humanos , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa