Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Neurosci ; 37(37): 8989-8999, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821647

RESUMO

Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7.SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli.


Assuntos
Degeneração Macular/fisiopatologia , Percepção de Movimento , Plasticidade Neuronal , Retina/fisiopatologia , Visão Binocular , Córtex Visual/fisiopatologia , Campos Visuais , Envelhecimento , Animais , Gatos , Feminino , Masculino , Reforço Psicológico
2.
Hum Brain Mapp ; 39(9): 3742-3758, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29923660

RESUMO

Experienced video game players exhibit superior performance in visuospatial cognition when compared to non-players. However, very little is known about the relation between video game experience and structural brain plasticity. To address this issue, a direct comparison of the white matter brain structure in RTS (real time strategy) video game players (VGPs) and non-players (NVGPs) was performed. We hypothesized that RTS experience can enhance connectivity within and between occipital and parietal regions, as these regions are likely to be involved in the spatial and visual abilities that are trained while playing RTS games. The possible influence of long-term RTS game play experience on brain structural connections was investigated using diffusion tensor imaging (DTI) and a region of interest (ROI) approach in order to describe the experience-related plasticity of white matter. Our results revealed significantly more total white matter connections between occipital and parietal areas and within occipital areas in RTS players compared to NVGPs. Additionally, the RTS group had an altered topological organization of their structural network, expressed in local efficiency within the occipito-parietal subnetwork. Furthermore, the positive association between network metrics and time spent playing RTS games suggests a close relationship between extensive, long-term RTS game play and neuroplastic changes. These results indicate that long-term and extensive RTS game experience induces alterations along axons that link structures of the occipito-parietal loop involved in spatial and visual processing.


Assuntos
Conectoma/métodos , Imagem de Tensor de Difusão , Plasticidade Neuronal , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Jogos de Vídeo , Substância Branca/diagnóstico por imagem , Adulto , Atenção , Sistemas Computacionais , Escolaridade , Humanos , Atividades de Lazer , Masculino , Lobo Occipital/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Percepção Espacial/fisiologia , Comportamento Espacial/fisiologia , Percepção Visual/fisiologia , Substância Branca/fisiologia , Adulto Jovem
3.
Postepy Biochem ; 64(3): 213-221, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30656906

RESUMO

Somatostatin is a peptide that participates in numerous biochemical and signaling pathways. It functions via receptors (SSTRs1-5), which belong to the family of receptors coupled with protein G. All somatostatin receptors are characterized by a certain degree of homology in molecular structure. The cell effects of their agonists in peripheral tissues rely mainly on the inhibition of the hormones release. Somatostatin is also an important neuromodulator and neurotransmitter. SSTRs may affect other receptors, forming structural and functional homodimers and heterodimers. SSTRs play also role in the regulation of physiological processes, such as itching and pain, reproductive functions, regulation of feeding or mood. Besides physiological functions, SSTRs contribute also to the pathogenesis of glial tumors, neurodegenerative diseases, or post hemorrhagic stroke changes. Recent years of research have provided new data regarding the role of somatostatin receptor signaling pathways in the brain and the knowledge in this field is developing rapidly.


Assuntos
Encéfalo/metabolismo , Receptores de Somatostatina/metabolismo , Humanos , Neurotransmissores/metabolismo , Transdução de Sinais , Somatostatina/metabolismo
4.
Cereb Cortex ; 25(10): 3515-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25205660

RESUMO

Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Privação Sensorial/fisiologia , Córtex Visual/crescimento & desenvolvimento , Campos Visuais/fisiologia , Animais , Gatos , RNA Mensageiro/metabolismo , Visão Binocular/fisiologia , Córtex Visual/metabolismo
5.
Neural Plast ; 2016: 9828517, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819780

RESUMO

Associative fear learning, in which stimulation of whiskers is paired with mild electric shock to the tail, modifies the barrel cortex, the functional representation of sensory receptors involved in the conditioning, by inducing formation of new inhibitory synapses on single-synapse spines of the cognate barrel hollows and thus producing double-synapse spines. In the barrel cortex of conditioned, pseudoconditioned, and untreated mice, we analyzed the number and morphological features of dendritic spines at various maturation and stability levels: sER-free spines, spines containing smooth endoplasmic reticulum (sER), and spines containing spine apparatus. Using stereological analysis of serial sections examined by transmission electron microscopy, we found that the density of double-synapse spines containing spine apparatus was significantly increased in the conditioned mice. Learning also induced enhancement of the postsynaptic density area of inhibitory synapses as well as increase in the number of polyribosomes in such spines. In single-synapse spines, the effects of conditioning were less pronounced and included increase in the number of polyribosomes in sER-free spines. The results suggest that fear learning differentially affects single- and double-synapse spines in the barrel cortex: it promotes maturation and stabilization of double-synapse spines, which might possibly contribute to permanent memory formation, and upregulates protein synthesis in single-synapse spines.


Assuntos
Aprendizagem por Associação/fisiologia , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Clássico/fisiologia , Feminino , Memória/fisiologia , Camundongos
6.
Eur J Neurosci ; 42(8): 2585-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26274013

RESUMO

The circadian rhythmicity displayed by motor behavior of mice: activity at night and rest during the day; and the associated changes in the sensory input are reflected by cyclic synaptic plasticity in the whisker representations located in the somatosensory (barrel) cortex. It was not clear whether diurnal rhythmic changes in synapse density previously observed in the barrel cortex resulted from changes in the activity of the animals, from daily light/dark (LD) rhythm or are driven by an endogenous clock. These changes were investigated in the barrel cortex of C57BL/6 mouse strain kept under LD 12 : 12 h conditions and in constant darkness (DD). Stereological analysis of serial electron microscopic sections was used to assess numerical density of synapses. In mice kept under LD conditions, the total density of synapses and the density of excitatory synapses located on dendritic spines was higher during the light period (rest phase). In contrast, the density of inhibitory synapses located on dendritic spines increased during the dark period (activity phase). Under DD conditions, the upregulation of the inhibitory synapses during the activity phase was retained, but the cyclic changes in the density of excitatory synapses were not observed. The results show that the circadian plasticity concerns only synapses located on spines (and not those on dendritic shafts), and that excitatory and inhibitory synapses are differently regulated during the 24 h cycle: the excitatory synapses are influenced by light, whilst the inhibitory synapses are driven by the endogenous circadian clock.


Assuntos
Ritmo Circadiano/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Actigrafia , Animais , Escuridão , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Locomoção/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Inibição Neural/fisiologia , Fotoperíodo , Córtex Somatossensorial/ultraestrutura , Sinapses/ultraestrutura
7.
Neural Plast ; 2015: 175701, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785202

RESUMO

Npas4 has recently been identified as an important factor in brain plasticity, particularly in mechanisms of inhibitory control. Little is known about Npas4 expression in terms of cortical plasticity. In the present study expressions of Npas4 and the archetypal immediate early gene (IEG) c-Fos were investigated in the barrel cortex of mice after sensory deprivation (sparing one row of whiskers for 7 days) or sensory conditioning (pairing stimulation of one row of whiskers with aversive stimulus). Laser microdissection of individual barrel rows allowed for analysis of IEGs expression precisely in deprived and nondeprived barrels (in deprivation study) or stimulated and nonstimulated barrels (in conditioning study). Cortex activation by sensory conditioning was found to upregulate the expression of both Npas4 and c-Fos. Reorganization of cortical circuits triggered by removal of selected rows of whiskers strongly affected c-Fos but not Npas4 expression. We hypothesize that increased inhibitory synaptogenesis observed previously after conditioning may be mediated by Npas4 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/metabolismo , Vibrissas
8.
Sci Rep ; 14(1): 19546, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174711

RESUMO

Aging-related biochemical changes in nerve cells lead to dysfunctional synapses and disrupted neuronal circuits, ultimately affecting vital processes such as brain plasticity, learning, and memory. The imbalance between excitation and inhibition in synaptic function during aging contributes to cognitive impairment, emphasizing the importance of compensatory mechanisms. Fear conditioning-related plasticity of the somatosensory barrel cortex, relying on the proper functioning and extensive up regulation of the GABAergic system, in particular interneurons containing somatostatin, is compromised in aging (one-year-old) mice. The present research explores two potential interventions, taurine supplementation, and environmental enrichment, revealing their effectiveness in supporting learning-induced plasticity in the aging mouse brain. They do not act through a mechanism normalizing the Glutamate/GABA balance that is disrupted in aging. Still, they allow for increased somatostatin levels, an effect observed in young animals after learning. These findings highlight the potential of lifestyle interventions and diet supplementation to mitigate age-related cognitive decline by promoting experience-dependent plasticity.


Assuntos
Envelhecimento , Suplementos Nutricionais , Plasticidade Neuronal , Taurina , Animais , Plasticidade Neuronal/fisiologia , Envelhecimento/fisiologia , Taurina/metabolismo , Taurina/farmacologia , Taurina/administração & dosagem , Camundongos , Masculino , Somatostatina/metabolismo , Camundongos Endogâmicos C57BL , Aprendizagem/fisiologia , Meio Ambiente , Medo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Encéfalo/metabolismo , Encéfalo/fisiologia
9.
Cereb Cortex ; 22(9): 2160-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22021911

RESUMO

Modifications of properties of the adult sensory cortex by elimination of sensory input (deprivation) serves as a model for studying plasticity in the adult brain. We studied the effects of short- and long-term deprivation (sparing one row of vibrissae) upon the barrel cortex. The response to stimulation (exploration of a new environment) of the spared row was examined with [14C]-2-deoxyglucose autoradiography and c-Fos immunohistochemistry. Both methods found large increases of the functional cortical representation of the spared row of vibrissae, extending into parts of the barrel cortex previously activated by the deprived vibrissae. With both methods, the greatest expansion of spared input was observed in cortical layer IV. In this way, we established a model, which was applied for examining involvement of matrix metalloproteinase 9 (MMP-9), upon experience-dependent cortical plasticity. MMP-9 is an enzyme implicated in plastic modification of the neuronal connections. We found that MMP-9 activity was increased in response to stimulation, and furthermore, MMP-9 knockout mice showed a modest but significant decrease of plasticity in layer IV with 2-DG mapping and in layers II/III with c-Fos mapping. Thus, in adult mouse brain experience-dependent plasticity is in part supported by the activity of MMP-9.


Assuntos
Mapeamento Encefálico/métodos , Metaloproteinase 9 da Matriz/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Autorradiografia , Desoxiglucose/farmacologia , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/metabolismo , Privação Sensorial/fisiologia , Vibrissas/inervação
10.
Neural Plast ; 2013: 258582, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533818

RESUMO

Age-related brain injuries including stroke are a leading cause of morbidity and mental disability worldwide. Most patients who survive stroke experience some degree of recovery. The restoration of lost functions can be explained by neuronal plasticity, understood as brain ability to reorganize and remodel itself in response to changed environmental requirements. However, stroke triggers a cascade of events which may prevent the normal development of the plastic changes. One of them may be inflammatory response initiated immediately after stroke, which has been found to contribute to neuronal injury. Some recent evidence though has suggested that inflammatory reaction can be also neuroprotective. This paper attempts to discuss the influence of poststroke inflammatory response on brain plasticity and stroke outcome. We also describe the recent anti-inflammatory strategies that have been effective for recovery in experimental stroke.


Assuntos
Encefalite/imunologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/imunologia , Animais , Encefalite/patologia , Humanos , Acidente Vascular Cerebral/patologia , Fatores de Tempo
11.
J Neurosci ; 31(14): 5447-53, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471380

RESUMO

The somatosensory cortex in mice contains primary (SI) and secondary (SII) areas, differing in somatotopic precision, topographic organization, and function. The role of SII in somatosensory processing is still poorly understood. SII is activated bilaterally during attentional tasks and is considered to play a role in tactile memory and sensorimotor integration. We measured the plasticity of SII activation after associative learning based on classical conditioning, in which unilateral stimulation of one row of vibrissae was paired with a tail shock. The training consisted of three daily 10 min sessions, during which 40 pairings were delivered. Cortical activation driven by stimulation of vibrissae was mapped with 2-[(14)C]deoxyglucose (2DG) autoradiography 1 d after the end of conditioning. We reported previously that the conditioning procedure resulted in unilateral enlargement of 2DG-labeled cortical representation of the "trained" row of vibrissae in SI. Here, we measured the width and intensity of the labeled region in SII. We found that both measured parameters in SII increased bilaterally. The increase was observed in cortical layers II/III and IV. Apparently, plasticity in SII is not a simple reflection of changes in SI. It may be attributable to bilateral integrative role of SII, its lesser topographical specificity, and strong involvement in attentional processing.


Assuntos
Condicionamento Clássico/fisiologia , Lateralidade Funcional/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/inervação , Animais , Autorradiografia/métodos , Comportamento Animal , Mapeamento Encefálico/métodos , Desoxiglucose/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/diagnóstico por imagem , Estimulação Física/métodos , Cintilografia , Córtex Somatossensorial/diagnóstico por imagem , Gravação em Vídeo/métodos
12.
Eur J Neurosci ; 36(5): 2632-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22694049

RESUMO

Despite indications that brain plasticity may be enhanced after stroke, we have described impairment of experience-dependent plasticity in rat cerebral cortex neighboring the stroke-induced lesion. Photothrombotic stroke was centered behind the barrel cortex in one cerebral hemisphere of rats. Plasticity of cortical representation of one row of vibrissae was induced by sensory deprivation of all surrounding whiskers for 1 month, and visualized with [(14)C]-2-deoxyglucose autoradiography. In control rats deprivation resulted in an enlargement of functional cortical representation of the spared row of vibrissae. After a focal stroke neighbouring the barrel cortex, no plasticity of the spared row representation was found. Investigation of plastic changes with deprivation initiated 1 week and 1 month after stroke have shown that later poststroke onset of deprivation resulted in a partial recovery of cortical plasticity in the barrel field. Western blot analysis of proinflammatory enzyme cyclooxygenase-2 (COX-2) expression revealed its strong upregulation in the barrel cortex 24 h after stroke. When chronic treatment with the anti-inflammatory drug ibuprofen (10 mg/kg or 20 mg/kg) accompanied deprivation, plasticity was restored. Ibuprofen applied before the ischemia also prevented the poststroke upregulation of COX-2. The results strongly suggest that poststroke impairment of experience-dependent cortical plasticity is caused by stroke-induced inflammatory reactions that subside with poststroke delay and can be at least partially ameliorated by pharmacological treatment.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Córtex Cerebral/fisiopatologia , Ibuprofeno/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Masculino , Ratos , Ratos Wistar , Privação Sensorial , Regulação para Cima
13.
J Neurosci Res ; 90(1): 203-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21922513

RESUMO

Matrix metalloproteinase (MMP) activity is implicated in the degradation of the extracellular matrix during cerebral ischemia. Although many studies have demonstrated spatiotemporal patterns of activation of gelatinases (MMP-9 and MMP-2) after ischemic stroke in young adult rodents, no data exist on MMP activity in old brains. In this study, we investigated the gelatinolytic activity in young adult (3-month-old) and aged (1-year-old) mice subjected to photothrombotic stroke. Using in situ zymography and gel zymography, we found that the basal gelatinolytic activity in the intact cerebral cortex was similar at both investigated ages. Similarly, after photothrombosis, the increased gelatinolytic response up to 7 days poststroke was the same in young and aged brains. At both ages, early activation of gelatinolysis in the ischemic core and the perilesional area was present in neuronal nuclei as revealed by colocalization of gelatinolytic product with NeuN immunostaining and DAPI. Additionally, application of specific antibodies against MMP-9 and MMP-2 revealed the increase in MMP-9 immunoreactivity in cell nuclei as early as 4 hr poststroke. No differences between young and aged mice were observed concerning the level and localization of MMP-9 immunoreactivity. The lack of age-related differences in the degree and pattern of activation of gelatinolysis after focal stroke and the lack of correspondence between the results of in situ and gel zymography suggest that extracellular proteolysis is not directly responsible for the more severe outcome of ischemic stroke in aged subjects.


Assuntos
Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fatores Etários , Animais , Núcleo Celular/enzimologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/enzimologia , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Fatores de Tempo
14.
Biomolecules ; 12(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35204812

RESUMO

Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.


Assuntos
Interneurônios , Somatostatina , Animais , Humanos , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Somatostatina/farmacologia , Somatostatina/fisiologia
15.
Acta Neurobiol Exp (Wars) ; 82(4): 489-500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36748972

RESUMO

Intrinsic signal optical imaging (ISOI) has been used previously for the detection of changes in sensory processing in the somatosensory cortex in response to environment alteration or after deprivation of sensory information. To date, there have been no reports of ISOI being used in learning­induced changes in the somatosensory cortex. In the present study, ISOI was performed twice in the same mouse: before and after conditional fear learning. The conditioning paradigm consisted of pairing sensory stimulation of vibrissae with electric tail shock. In order to map the cortical representation of the vibrissa B1 with ISOI, we deflected the vibrissa with an intensive stimulation (frequency of 10 Hz for 6 s). After conditioning, we found that the cortical representation of vibrissa B1 had expanded by an average of 44%, compared with pre­learning, by using images obtained with ISOI. Previously, we demonstrated an enlargement of the cortical representation of the vibrissae stimulated by the same behavioral training paradigm but using [14C]2­deoxyglucose. This current investigation provides the first ISOI­based evidence of learning­induced changes in plasticity in the barrel cortex. The results indicate that irrespective of physiological mechanisms used for visualization of the vibrissae representation or subject's testing state (aware or anesthetized animal), the conditioning induced changes in each case in the cortical processing of intensive stimuli. This suggests specific functional reorganization of the neuronal circuits. Moreover, ISOI as a noninvasive method of mapping cortical activation in the same animal before and after behavioral training could serve as a very useful tool for precise manipulation within the cortex and for assessing the resulting effects on experience­dependent cortical plasticity.


Assuntos
Neurônios , Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Condicionamento Clássico/fisiologia , Vibrissas/fisiologia , Imagem Óptica , Plasticidade Neuronal/fisiologia
16.
J Neurosci ; 30(3): 1176-84, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089926

RESUMO

The structure of neurons changes during development and in response to injury or alteration in sensory experience. Changes occur in the number, shape, and dimensions of dendritic spines together with their synapses. However, precise data on these changes in response to learning are sparse. Here, we show using quantitative transmission electron microscopy that a simple form of learning involving mystacial vibrissae results in approximately 70% increase in the density of inhibitory synapses on spines of neurons located in layer IV barrels that represent the stimulated vibrissae. The spines contain one asymmetrical (excitatory) and one symmetrical (inhibitory) synapse (double-synapse spines), and their density increases threefold as a result of learning with no apparent change in the density of asymmetrical synapses. This effect seems to be specific for learning because pseudoconditioning (in which the conditioned and unconditioned stimuli are delivered at random) does not lead to the enhancement of symmetrical synapses but instead results in an upregulation of asymmetrical synapses on spines. Symmetrical synapses of cells located in barrels receiving the conditioned stimulus also show a greater concentration of GABA in their presynaptic terminals. These results indicate that the immediate effect of classical conditioning in the "conditioned" barrels is rapid, pronounced, and inhibitory.


Assuntos
Aprendizagem/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Proliferação de Células , Condicionamento Clássico , Camundongos , Microscopia Eletrônica , Receptores de GABA , Vibração , Vibrissas/fisiologia
17.
Ann N Y Acad Sci ; 1492(1): 42-57, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372699

RESUMO

It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.


Assuntos
Corpo Estriado/anatomia & histologia , Corpo Estriado/fisiologia , Jogos de Vídeo/psicologia , Adulto , Cognição/fisiologia , Sistemas Computacionais , Corpo Estriado/diagnóstico por imagem , Estudos Transversais , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Destreza Motora/fisiologia , Neuroimagem , Resolução de Problemas/fisiologia , Desempenho Psicomotor/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
18.
J Neurophysiol ; 104(2): 746-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20573973

RESUMO

Pairing tactile stimulation of whiskers with a tail shock is known to result in expansion of cortical representation of stimulated vibrissae and in the increase in synaptic GABAergic transmission. However, the impact of such sensory learning in classical conditioning paradigm on GABAergic tonic currents has not been addressed. To this end, we performed whole cell patch-clamp slice recordings of tonic currents from neurons (excitatory regular spiking, regular spiking nonpyramidal, and fast spiking interneurons) of layer 4 of the barrel cortex from naive and trained mice. Interestingly, endogenous tonic GABAergic currents measured from the excitatory neurons in the cortical representation of "trained" vibrissae were larger than in the "naïve" or pseudoconditioned ones. On the contrary, sensory learning markedly reduced tonic currents in the fast spiking interneurons but not in regular spiking nonpyramidal neurons. Changes of tonic currents were accompanied by changes in the input resistances-decrease in regular spiking and increase in fast spiking neurons, respectively. Applications of nipecotic acid, a GABA uptake blocker, enhanced the tonic currents, but the impact of the sensory learning remained qualitatively the same as in the case of the tonic currents. Similar to endogenous tonic currents, sensory learning enhanced currents induced by THIP (superagonist for delta subunit-containing GABA(A) receptors) in regular spiking neurons, whereas the opposite was observed for the fast spiking interneurons. In conclusion, our data show that the sensory learning strongly affects the GABAergic tonic currents in a cell-specific manner and suggest that the underlying mechanism involves regulation of expression of delta subunit-containing GABA(A) receptors.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/citologia , Condicionamento Clássico/fisiologia , Interneurônios/fisiologia , Vibrissas/inervação , Ácido gama-Aminobutírico/metabolismo , Animais , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , GABAérgicos/farmacologia , Camundongos , Vias Neurais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais Sinápticos/fisiologia , Tetrodotoxina/farmacologia
19.
Eur J Neurosci ; 32(10): 1715-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20964731

RESUMO

In adult mice, classical conditioning in which whisker stimulation is paired with an electric shock to the tail results in a decrease in the frequency of head movements, induces expansion of the cortical representation of stimulated vibrissae and enhances inhibitory synaptic interactions within the 'trained' barrels. We investigated whether such a simple associative learning paradigm also induced changes in neuronal excitability. Using whole-cell recordings from ex vivo slices of the barrel cortex we found that layer IV excitatory cells located in the cortical representation of the 'trained' row of vibrissae had a higher frequency of spikes recorded at threshold potential than neurons from the 'untrained' row and than cells from control animals. Additionally, excitatory cells within the 'trained' barrels were characterized by increased gain of the input-output function, lower amplitudes of fast after-hyperpolarization and decreased effect of blocking of BK channels by iberiotoxin. These findings provide new insight into the possible mechanism for enhanced intrinsic excitability of layer IV excitatory neurons. In contrast, the fast spiking inhibitory cells recorded in the same barrels did not change their intrinsic excitability after the conditioning procedure. The increased excitability of excitatory neurons within the 'trained' barrels may represent the counterpart of homeostatic plasticity, which parallels enhanced synaptic inhibition described previously. Together, the two mechanisms would contribute to increase the input selectivity within the conditioned cortical network.


Assuntos
Potenciais de Ação/fisiologia , Condicionamento Clássico/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Piperazinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Córtex Somatossensorial/fisiologia
20.
Brain Struct Funct ; 225(1): 387-401, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31873798

RESUMO

Inhibitory interneurons in the cerebral cortex contain specific proteins or peptides characteristic for a certain interneuron subtype. In mice, three biochemical markers constitute non-overlapping interneuron populations, which account for 80-90% of all inhibitory cells. These interneurons express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP). SST is not only a marker of a specific interneuron subtype, but also an important neuropeptide that participates in numerous biochemical and signalling pathways in the brain via somatostatin receptors (SSTR1-5). In the nervous system, SST acts as a neuromodulator and neurotransmitter affecting, among others, memory, learning, and mood. In the sensory cortex, the co-localisation of GABA and SST is found in approximately 30% of interneurons. Considering the importance of interactions between inhibitory interneurons in cortical plasticity and the possible GABA and SST co-release, it seems important to investigate the localisation of different SSTRs on cortical interneurons. Here, we examined the distribution of SSTR1-5 on barrel cortex interneurons containing PV, SST, or VIP. Immunofluorescent staining using specific antibodies was performed on brain sections from transgenic mice that expressed red fluorescence in one specific interneuron subtype (PV-Ai14, SST-Ai14, and VIP-Ai14 mice). SSTRs expression on PV, SST, and VIP interneurons varied among the cortical layers and we found two patterns of SSTRs distribution in L4 of barrel cortex. We also demonstrated that, in contrast to other interneurons, PV cells did not express SSTR2, but expressed other SSTRs. SST interneurons, which were not found to make chemical synapses among themselves, expressed all five SSTR subtypes.


Assuntos
Interneurônios/química , Receptores de Somatostatina/análise , Córtex Somatossensorial/química , Animais , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos Transgênicos , Parvalbuminas/análise , Receptores de Somatostatina/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Somatostatina/análise , Peptídeo Intestinal Vasoativo/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa