Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2315310121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990944

RESUMO

Bacitracin is a macrocyclic peptide antibiotic that is widely used as a topical treatment for infections caused by gram-positive bacteria. Mechanistically, bacitracin targets bacteria by specifically binding to the phospholipid undecaprenyl pyrophosphate (C55PP), which plays a key role in the bacterial lipid II cycle. Recent crystallographic studies have shown that when bound to C55PP, bacitracin adopts a highly ordered amphipathic conformation. In doing so, all hydrophobic side chains align on one face of the bacitracin-C55PP complex, presumably interacting with the bacterial cell membrane. These insights led us to undertake structure-activity investigations into the individual contribution of the nonpolar amino acids found in bacitracin. To achieve this we designed, synthesized, and evaluated a series of bacitracin analogues, a number of which were found to exhibit significantly enhanced antibacterial activity against clinically relevant, drug-resistant pathogens. As for the natural product, these next-generation bacitracins were found to form stable complexes with C55PP. The structure-activity insights thus obtained serve to inform the design of C55PP-targeting antibiotics, a key and underexploited antibacterial strategy.


Assuntos
Antibacterianos , Bacitracina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Bacitracina/farmacologia , Bacitracina/química , Relação Estrutura-Atividade , Farmacorresistência Bacteriana/efeitos dos fármacos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/análogos & derivados , Desenho de Fármacos , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/farmacologia
2.
J Am Chem Soc ; 145(2): 1136-1143, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36584241

RESUMO

Phenotypic screening is a powerful approach to identify novel antibiotics, but elucidation of the targets responsible for the antimicrobial activity is often challenging in the case of compounds with a polypharmacological mode of action. Here, we show that activity-based protein profiling maps the target interaction landscape of a series of 1,3,4-oxadiazole-3-ones identified in a phenotypic screen to have high antibacterial potency against multidrug-resistant Staphylococcus aureus. In situ competitive and comparative chemical proteomics with a tailor-made activity-based probe, in combination with transposon and resistance studies, revealed several cysteine and serine hydrolases as relevant targets. Our data showcase oxadiazolones as a novel antibacterial chemotype with a polypharmacological mode of action, in which FabH, FphC, and AdhE play a central role.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/química , Proteômica , Testes de Sensibilidade Microbiana , Staphylococcus aureus
3.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393901

RESUMO

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Medo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Receptores de Canabinoides/metabolismo , Transdução de Sinais
4.
Chemistry ; 27(11): 3806-3811, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33237604

RESUMO

The increasing prevalence of metallo-ß-lactamase (MBL)-expressing bacteria presents a worrying trend in antibiotic resistance. MBLs rely on active site zinc ions for their hydrolytic activity and the pursuit of MBL-inhibitors has therefore involved the investigation of zinc chelators. To ensure that such chelators specifically target MBLs, a series of cephalosporin prodrugs of two potent zinc-binders: dipicolinic acid (DPA) and 8-thioquinoline (8-TQ) was prepared. Although both DPA and 8-TQ bind free zinc very tightly (Kd values in the low nm range), the corresponding cephalosporin conjugates do not. The cephalosporin conjugates are efficiently hydrolyzed by MBLs to release DPA or 8-TQ, as confirmed by using both NMR and LC-MS studies. Notably, the cephalosporin prodrugs of DPA and 8-TQ show potent inhibitory activity against NDM, VIM, and IMP classes of MBLs and display potent synergy with meropenem against MBL-expressing clinical isolates of K. pneumoniae and E. coli.


Assuntos
Cefalosporinas/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Pró-Fármacos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana
5.
Chembiochem ; 21(6): 789-792, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31552694

RESUMO

The prevalence of life-threatening, drug-resistant microbial infections has challenged researchers to consider alternatives to currently available antibiotics. Teixobactin is a recently discovered "resistance-proof" antimicrobial peptide that targets the bacterial cell wall precursor lipid II. In doing so, teixobactin exhibits potent antimicrobial activity against a wide range of Gram-positive organisms. Herein we demonstrate that teixobactin and several structural analogues are capable of binding lipid II from both Gram-positive and Gram-negative bacteria. Furthermore, we show that when combined with known outer membrane-disrupting peptides, teixobactin is active against Gram-negative organisms.


Assuntos
Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Antibacterianos/química , Sítios de Ligação/efeitos dos fármacos , Depsipeptídeos/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Uridina Difosfato Ácido N-Acetilmurâmico/antagonistas & inibidores
6.
ChemMedChem ; : e202400302, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946213

RESUMO

Antibiotics, particularly the ß-lactams, are a cornerstone of modern medicine. However, the rise of bacterial resistance to these agents, particularly through the actions of ß-lactamases, poses a significant threat to our continued ability to effectively treat infections. Metallo-ß-lactamases (MBLs) are of particular concern due to their ability to hydrolyze a wide range of ß-lactam antibiotics including carbapenems. For this reason there is growing interest in the development of MBL inhibitors as well as novel antibiotics that can overcome MBL-mediated resistance. Here, we report the synthesis and evaluation of novel conjugates that combine a carbapenem (meropenem or ertapenem) with a recently reported MBL inhibiting indole carboxylate scaffold. These hybrids were found to display potent inhibition against MBLs including NDM-1 and IMP-1, with IC50 values in the low nanomolar range. However, their antibacterial potency was limited. Mechanistic studies suggest that despite maintaining effective MBL inhibiting activity in live bacteria, the new carbapenem/MBL inhibitor conjugates have a reduced ability to engage with the bacterial target of the ß-lactams.

7.
Nat Chem ; 16(9): 1462-1472, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38898213

RESUMO

Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.


Assuntos
Antibacterianos , DNA Girase , Farmacorresistência Bacteriana , Escherichia coli , Fluoroquinolonas , Isoquinolinas , Sulfonamidas , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/síntese química , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/síntese química , DNA Girase/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Descoberta de Drogas , Regulação Alostérica/efeitos dos fármacos
8.
Sci Transl Med ; 16(759): eabo4736, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110780

RESUMO

Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.


Assuntos
Antibacterianos , Lipoglicopeptídeos , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Lipoglicopeptídeos/farmacologia , Lipoglicopeptídeos/uso terapêutico , Camundongos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Glicopeptídeos/farmacologia , Glicopeptídeos/química , Glicopeptídeos/uso terapêutico , Bactérias Gram-Positivas/efeitos dos fármacos , Feminino
9.
Chem Sci ; 14(25): 6943-6952, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389250

RESUMO

There is an increasing interest in the application of metal-organic cages (MOCs) in a biomedicinal context, as they can offer non-classical distribution in organisms compared to molecular substrates, while revealing novel cytotoxicity mechanisms. Unfortunately, many MOCs are not sufficiently stable under in vivo conditions, making it difficult to study their structure-activity relationships in living cells. As such, it is currently unclear whether MOC cytotoxicity stems from supramolecular features or their decomposition products. Herein, we describe the toxicity and photophysical properties of highly-stable rhodamine functionalized platinum-based Pt2L4 nanospheres as well as their building blocks under in vitro and in vivo conditions. We show that in both zebrafish and human cancer cell lines, the Pt2L4 nanospheres demonstrate reduced cytotoxicity and altered biodistribution within the body of zebrafish embryos compared to the building blocks. We anticipate that the composition-dependent biodistribution of Pt2L4 spheres together with their cytotoxic and photophysical properties provides the fundament for MOC application in cancer therapy.

10.
iScience ; 26(4): 106394, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37013189

RESUMO

Antibiotic resistance is reaching alarming levels, demanding for the discovery and development of antibiotics with novel chemistry and mechanisms of action. The recently discovered antibiotic cacaoidin combines the characteristic lanthionine residue of lanthipeptides and the linaridin-specific N-terminal dimethylation in an unprecedented N-dimethyl lanthionine ring, being therefore designated as the first class V lanthipeptide (lanthidin). Further notable features include the high D-amino acid content and a unique disaccharide substitution attached to the tyrosine residue. Cacaoidin shows antimicrobial activity against gram-positive pathogens and was shown to interfere with peptidoglycan biosynthesis. Initial investigations indicated an interaction with the peptidoglycan precursor lipid IIPGN as described for several lanthipeptides. Using a combination of biochemical and molecular interaction studies we provide evidence that cacaoidin is the first natural product demonstrated to exhibit a dual mode of action combining binding to lipid IIPGN and direct inhibition of cell wall transglycosylases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa