RESUMO
Cardiovascular comorbidities and immune-response dysregulation are associated with COVID-19 severity. We aimed to explore the key immune cell profile and understand its association with disease progression in 156 patients with hypertension that were hospitalized due to COVID-19. The primary outcome was progression to severe disease. The probability of progression to severe disease was estimated using a logistic regression model that included clinical variables and immune cell subsets associated with the primary outcome. Obesity; diabetes; oxygen saturation; lung involvement on computed tomography (CT) examination; the C-reactive protein concentration; total lymphocyte count; proportions of CD4+ and CD8+ T cells; CD4/CD8 ratio; CD8+ HLA-DR MFI; and CD8+ NKG2A MFI on admission were all associated with progression to severe COVID-19. This study demonstrated that increased CD8+ NKG2A MFI at hospital admission, in combination with some clinical variables, is associated with a high risk of COVID-19 progression in hypertensive patients. These findings reinforce the hypothesis of the functional exhaustion of T cells with the increased expression of NKG2A in patients with severe COVID-19, elucidating how severe acute respiratory syndrome coronavirus 2 infection may break down the innate antiviral immune response at an early stage of the disease, with future potential therapeutic implications.
RESUMO
Background: Cardiovascular comorbidities such as hypertension and inflammatory response dysregulation are associated with worse COVID-19 prognoses. Different cytokines have been proposed to play vital pathophysiological roles in COVID-19 progression, but appropriate prognostic biomarkers remain lacking. We hypothesized that the combination of immunological and clinical variables at admission could predict the clinical progression of COVID-19 in hypertensive patients. Methods: The levels of biomarkers, including C-reactive protein, lymphocytes, monocytes, and a panel of 29 cytokines, were measured in blood samples from 167 hypertensive patients included in the BRACE-CORONA trial. The primary outcome was the highest score during hospitalization on the modified WHO Ordinal Scale for Clinical Improvement. The probability of progression to severe disease was estimated using a logistic regression model that included clinical variables and biomarkers associated significantly with the primary outcome. Results: During hospitalization, 13 (7.8%) patients showed progression to more severe forms of COVID-19, including three deaths. Obesity, diabetes, oxygen saturation, lung involvement on computed tomography examination, the C-reactive protein level, levels of 15 cytokines, and lymphopenia on admission were associated with progression to severe COVID-19. Elevated levels of interleukin-10 and interleukin-12 (p70) combined with two or three of the abovementioned clinical comorbidities were associated strongly with progression to severe COVID-19. The risk of progression to severe disease reached 97.5% in the presence of the five variables included in our model. Conclusions: This study demonstrated that interleukin-10 and interleukin-12 (p70) levels, in combination with clinical variables, at hospital admission are key biomarkers associated with an increased risk of disease progression in hypertensive patients with COVID-19.