Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 240: 124301, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004936

RESUMO

To fully research the anti-diabetic activity of apricot polysaccharide, low temperature plasma (LTP) was used to modify apricot polysaccharide. The modified polysaccharide was isolated and purified using column chromatography. It was found that LTP modification can significantly improve the α-glucosidase glucosidase inhibition rate of apricot polysaccharides. The isolated fraction FAPP-2D with HG domain showed excellent anti-diabetic activity in insulin resistance model in L6 cell. We found that FAPP-2D increased the ADP/ATP ratio and inhibited PKA phosphorylation, activating the LKB1-AMPK pathway. Moreover, FAPP-2D activated AMPK-PGC1α pathway, which could stimulated mitochondrial production and regulate energy metabolism, promoting GLUT4 protein transport to achieve an anti-diabetic effect. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy data showed that the LTP modification could increase the CH bond content while decreasing the C-O-C/C-O bond content, indicating that LTP destroyed the C-O-C/C-O bond, which enhanced the anti-diabetes activity of the modified apricot pectin polysaccharide. Our findings could pave the way for the molecular exploitation of apricot polysaccharides and the application of low-temperature plasma.


Assuntos
Diabetes Mellitus , Prunus armeniaca , Pectinas/química , Prunus armeniaca/química , Temperatura , Proteínas Quinases Ativadas por AMP/metabolismo , Polissacarídeos/química
2.
J Food Sci ; 87(1): 466-480, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34914095

RESUMO

4'-O-methylpyridoxine (MPN), a recognized antivitamin B6 compound, is a potentially poisonous substance found in Ginkgo biloba L. In this work, the effects of MPN on the metabolism of vitamin B6 , neurotransmitters, and amino acids were compared in the plasma and brain of young and adult rats under various administration times. Results showed that the contents of MPN residues in the plasma and brain of young rats were 12.72 and 14.76 µM higher than adult rats, respectively. Moreover, the levels of 5-hydroxytryptamine and dopamine in the brain of young rats have decreased by 13.78% and 7.19%, respectively, compared with the control group, at 2 h after MPN administration. Furthermore, the principal component analysis revealed that MPN was an important contributor to the amino acid composition in the brain of young rats. These results suggest that age may lead to different toxic effects of MPN. PRACTICAL APPLICATION: 4'-O-methylpyridoxine is primarily responsible for poisoning due to overconsumption of Ginkgo biloba seeds. This study will provide an exploratory understanding of the age-dependent toxicity of 4'-O-methylpyridoxine.


Assuntos
Aminoácidos , Vitamina B 6 , Animais , Ginkgo biloba , Neurotransmissores , Extratos Vegetais , Piridoxina/análogos & derivados , Ratos , Vitaminas
3.
Toxicon ; 201: 66-73, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425140

RESUMO

4'-O-methylpyridoxine (MPN), a recognized antivitamin B6 compound, is a potentially poisonous substance found in Ginkgo biloba seeds and leaves. In this work, the body weights, histopathological changes, plasma vitamin B6 (VB6), biochemical parameters, oxidative stress responses, and amino acids of rats were investigated after intragastric administration of MPN for 15 days. Results showed that intragastric administration of 50 mg/kg BW MPN caused pathological changes in the brain and heart tissues of rats. Administration of 10 mg/kg and 30 mg/kg BW MPN can significantly increase VB6 analogs in the plasma of rats, such as pyridoxal-5'-phosphate, pyridoxal. Results of biochemical parameters indicated that MPN can damage brains and hearts by changing the enzyme activity of these organs. These results suggest that consumption of Ginkgo biloba seeds for the long term, even in a small quantity, may lead to poisoning.


Assuntos
Ginkgo biloba , Hematologia , Animais , Estresse Oxidativo , Extratos Vegetais/toxicidade , Piridoxina/análogos & derivados , Ratos , Sementes
4.
J Food Biochem ; 43(7): e12871, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353726

RESUMO

Garlic has attracted considerable attention because of its bactericidal and anticancer effects. However, the greening of garlic purees greatly affects the product quality. This study investigated the influence of light colors and power on the greening of garlic, and determined the key substances of garlic puree greening, including γ-glutamyl transpeptidase (γ-GT), thiosulfinate, and alliinase. Results showed that purple light source greatly affects greening power, γ-GT, and thiosulfinate. Illumination using a 3-W power lamp could reduce the production of thiosulfinate and alliinase and inhibit the green transformation reaction. Illumination using a 5-W power lamp greatly affected the thiosulfinate content and greening power, whereas that using a 7-W power lamp greatly influenced the γ-GT activity, porphobilinogen content, and alliinase content. Results showed that the green color of garlic puree is greatly affected by the illumination color and intensity, which provides theoretical support for the anti-greening of light garlic puree. PRACTICAL APPLICATION: Because garlic puree easily turns green during processing, which affects the product quality and economic value, this study uses controllable light source radiation to influence the greening of garlic puree, hoping to delay or even solve this problem and provide a new simple method to prevent garlic puree from turning greening.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Alho/enzimologia , Alho/efeitos da radiação , Proteínas de Plantas/metabolismo , gama-Glutamiltransferase/metabolismo , Cor , Alho/química , Alho/crescimento & desenvolvimento , Luz , Pigmentos Biológicos/análise , Pigmentos Biológicos/metabolismo , Porfobilinogênio/análise , Porfobilinogênio/metabolismo
5.
Artigo em Zh | MEDLINE | ID: mdl-15643089

RESUMO

Ethylene and PG (polygalacturonase) are both key plant growth regulators in fruit ripening process. The expression of PG was markedly inhibited in either antisense ACS tomato (Lycopersicon esculentum cv. Lichun) where endogenous ethylene synthesis was suppressed, or in Nr mutant in which ethylene perception was severely damaged. Also, the PG activities in fruits of these mutants were significantly lower than that of wild-type tomato (Fig. 1B). PG gene expression was promoted in mature green tomato fruit by exogenous ethylene 100 microL/L treatment for 4 h, and was inhibited significantly in breaking tomato fruit after being treated with 1-MCP (1-methylcycloprane) 1 microL/L, a specific ethylene reception inhibitor. Ethylene production of antisense PG tomato fruit during 45-50 DAP was lower than that of wild-type tomato (Fig. 4), and the level of transcriptional expression of both the ethylene receptor gene LeETR4 and the ethylene response factor gene LeERF2 were lower in this transgenic tomato fruit (Fig. 5). Ethylene production and the expression of LeETR4 and LeERF2 were both promoted by treatments with D-GA 100 mg/L, a product of enzymatic degradation of PG, in immature tomato fruit (Fig. 6 and Fig. 7). The relationship of PG and ethylene in tomato fruit in this study provided forceful evidences to support the mechanism by which PG and ethylene synergistically regulated climacteric fruit ripening and softening.


Assuntos
Etilenos/metabolismo , Frutas/enzimologia , Poligalacturonase/metabolismo , Solanum lycopersicum/enzimologia , Sequência de Bases , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonase/química , Poligalacturonase/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa