Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(10): 1294-1305, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556879

RESUMO

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunogenicidade da Vacina/imunologia , Vacinas Virais/imunologia , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Expressão Gênica/imunologia , Vetores Genéticos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunização/métodos , Primatas/imunologia , Primatas/virologia , Vacinação/métodos
3.
Nat Immunol ; 20(3): 362-372, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742080

RESUMO

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Nanopartículas/química , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/virologia , Reações Cruzadas/efeitos dos fármacos , Reações Cruzadas/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Imunização , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia
4.
Cell ; 166(4): 1004-1015, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27453467

RESUMO

Targeted HIV cure strategies require definition of the mechanisms that maintain the virus. Here, we tracked HIV replication and the persistence of infected CD4 T cells in individuals with natural virologic control by sequencing viruses, T cell receptor genes, HIV integration sites, and cellular transcriptomes. Our results revealed three mechanisms of HIV persistence operating within distinct anatomic and functional compartments. In lymph node, we detected viruses with genetic and transcriptional attributes of active replication in both T follicular helper (TFH) cells and non-TFH memory cells. In blood, we detected inducible proviruses of archival origin among highly differentiated, clonally expanded cells. Linking the lymph node and blood was a small population of circulating cells harboring inducible proviruses of recent origin. Thus, HIV replication in lymphoid tissue, clonal expansion of infected cells, and recirculation of recently infected cells act together to maintain the virus in HIV controllers despite effective antiviral immunity.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Sangue/virologia , Linfócitos T CD4-Positivos/imunologia , Doença Crônica , DNA Viral/genética , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Leucócitos Mononucleares , Linfonodos/virologia , Provírus/imunologia , Análise de Sequência de DNA , Fenômenos Fisiológicos Virais , Replicação Viral
5.
Cell ; 166(3): 609-623, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27453470

RESUMO

Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Adulto , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Linfócitos B/imunologia , Epitopos de Linfócito B , Feminino , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Humanos , Memória Imunológica , Virus da Influenza A Subtipo H5N1/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Adulto Jovem
6.
Cell ; 162(5): 1090-100, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26279189

RESUMO

Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.


Assuntos
Vacinas contra Herpesvirus/química , Vacinas contra Herpesvirus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Cristalografia por Raios X , Desenho de Fármacos , Feminino , Herpesvirus Humano 4 , Vacinas contra Herpesvirus/genética , Vacinas contra Herpesvirus/isolamento & purificação , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/ultraestrutura , Receptores de Complemento 3d/química , Receptores de Complemento 3d/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
7.
Cell ; 155(3): 505-14, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243010

RESUMO

During HIV infection, the timing of opportunistic infections is not always associated with severity of CD4 T cell depletion, and different opportunistic pathogens reactivate at different CD4 T cell thresholds. Here, we examine how differences in the phenotype and function of pathogen-specific CD4 T cells influence susceptibility to HIV infection. By focusing on three common opportunistic infections (Mycobacterium tuberculosis, human papillomavirus, and cytomegalovirus), we investigate how differential depletion of pathogen-specific CD4 T cells impacts the natural history of these pathogens in HIV infection. A broader understanding of this relationship can better inform treatment strategies against copathogens.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/complicações , Tuberculose/imunologia , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/virologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Mycobacterium tuberculosis , Tuberculose/microbiologia , Tuberculose/virologia
8.
J Allergy Clin Immunol ; 153(2): 503-512, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38344971

RESUMO

BACKGROUND: The immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines is variable in individuals with different inborn errors of immunity or acquired immune deficiencies and is yet unknown in people with idiopathic CD4 lymphopenia (ICL). OBJECTIVE: We sought to determine the immunogenicity of mRNA vaccines in patients with ICL with a broad range of CD4 T-cell counts. METHODS: Samples were collected from 25 patients with ICL and 23 age- and sex-matched healthy volunteers (HVs) after their second or third SARS-CoV-2 mRNA vaccine dose. Anti-spike and anti-receptor binding domain antibodies were measured. T-cell receptor sequencing and stimulation assays were performed to quantify SARS-CoV-2-specific T-cell responses. RESULTS: The median age of ICL participants was 51 years, and their median CD4 count was 150 cells/µL; 11 participants had CD4 counts ≤100 cells/µL. Anti-spike IgG antibody levels were greater in HVs than in patients with ICL after 2 and 3 doses of mRNA vaccine. There was no detectable significant difference, however, in anti-S IgG between HVs and participants with ICL and CD4 counts >100 cells/µL. The depth of spike-specific T-cell responses by T-cell receptor sequencing was lower in individuals with ICL. Activation-induced markers and cytokine production of spike-specific CD4 T cells in participants with ICL did not differ significantly compared with HVs after 2 or 3 vaccine doses. CONCLUSIONS: Patients with ICL and CD4 counts >100 cells/µL can mount vigorous humoral and cellular immune responses to SARS-CoV-2 vaccination; however, patients with more severe CD4 lymphopenia have blunted vaccine-induced immunity and may require additional vaccine doses and other risk mitigation strategies.


Assuntos
COVID-19 , Linfopenia , Humanos , Pessoa de Meia-Idade , Vacinas contra COVID-19 , Vacinas de mRNA , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Receptores de Antígenos de Linfócitos T , Imunidade , RNA Mensageiro , Anticorpos Antivirais
9.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
10.
J Virol ; 97(7): e0159622, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395646

RESUMO

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Assuntos
Anticorpos Antivirais , COVID-19 , Epitopos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Epitopos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Domínios Proteicos , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Modelos Moleculares , Linhagem Celular
11.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903232

RESUMO

The development of follicular helper CD4 T (TFH) cells is a dynamic process resulting in a heterogenous pool of TFH subsets. However, the cellular and molecular determinants of this heterogeneity and the possible mechanistic links between them is not clear. We found that human TFH differentiation is associated with significant changes in phenotypic, chemokine, functional, metabolic and transcriptional profile. Furthermore, this differentiation was associated with distinct positioning to follicular proliferating B cells. Single-cell T cell receptor (TCR) clonotype analysis indicated the transitioning toward PD-1hiCD57hi phenotype. Furthermore, the differentiation of TFH cells was associated with significant reduction in TCR level and drastic changes in immunological synapse formation. TFH synapse lacks a tight cSMAC (central supra molecular activation Cluster) but displays the TCR in peripheral microclusters, which are potentially advantageous in the ability of germinal center (GC) B cells to receive necessary help. Our data reveal significant aspects of human TFH heterogeneity and suggest that the PD-1hiCD57hi TFH cells, in particular, are endowed with distinctive programming and spatial positioning for optimal GC B cell help.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/imunologia , Receptores de Antígenos de Linfócitos T/genética , Células T Auxiliares Foliculares/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD57/genética , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Quimiocinas/genética , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Sinapses Imunológicas/genética , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos T/imunologia , Células T Auxiliares Foliculares/metabolismo , Subpopulações de Linfócitos T/imunologia
12.
Clin Infect Dis ; 76(4): 573-581, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36200701

RESUMO

BACKGROUND: Nirmatrelvir/ritonavir, the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease inhibitor, reduces the risk of hospitalization and death by coronavirus disease 2019 (COVID-19) but has been associated with symptomatic rebound after therapy completion. METHODS: Six individuals with relapse of COVID-19 symptoms after treatment with nirmatrelvir/ritonavir, 2 individuals with rebound symptoms without prior antiviral therapy and 7 patients with acute Omicron infection (controls) were studied. Soluble biomarkers and serum SARS-CoV-2 nucleocapsid protein were measured. Nasal swabs positive for SARS-CoV-2 underwent viral isolation and targeted viral sequencing. SARS-CoV-2 anti-spike, anti-receptor-binding domain, and anti-nucleocapsid antibodies were measured. Surrogate viral neutralization tests against wild-type and Omicron spike protein, as well as T-cell stimulation assays, were performed. RESULTS: High levels of SARS-CoV-2 anti-spike immunoglobulin G (IgG) antibodies were found in all participants. Anti-nucleocapsid IgG and Omicron-specific neutralizing antibodies increased in patients with rebound. Robust SARS-CoV-2-specific T-cell responses were observed, higher in rebound compared with early acute COVID-19 patients. Inflammatory markers mostly decreased during rebound. Two patients sampled longitudinally demonstrated an increase in activated cytokine-producing CD4+ T cells against viral proteins. No characteristic resistance mutations were identified. SARS-CoV-2 was isolated by culture from 1 of 8 rebound patients; Polybrene addition increased this to 5 of 8. CONCLUSIONS: Nirmatrelvir/ritonavir treatment does not impede adaptive immune responses to SARS-CoV-2. Clinical rebound corresponds to development of a robust antibody and T-cell immune response, arguing against a high risk of disease progression. The presence of infectious virus supports the need for isolation and assessment of longer treatment courses. CLINICAL TRIALS REGISTRATION: NCT04401436.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Ritonavir , Tratamento Farmacológico da COVID-19 , Antivirais , Imunoglobulina G , Anticorpos Antivirais
13.
PLoS Pathog ; 17(2): e1009339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600506

RESUMO

Toll-like receptor 7 (TLR7) agonist and PGT121 (broadly neutralizing antibody, bnAb) administration previously delayed viral rebound and induced SHIV remission. We evaluated the impact of GS-986 (TLR7 agonist) and dual bnAbs on viral rebound after antiretroviral therapy (ART) interruption. Rhesus macaques inoculated with SHIV-1157ipd3N4 were initiated on daily suppressive ART from Day 14 post SHIV inoculation. Active arm animals (n = 8) received GS-986, N6-LS and PGT121 after plasma viral suppression, starting from week 14. GS-986 induced immune activation and SHIV-specific T cell responses but not viral expression in all the active arm animals. After ART interruption, median time to viral rebound was 6 weeks in the active and 3 weeks in the control arm (p = 0.024). In this animal model, the administration of the combination of GS-986 and dual bnAbs was associated with a modest delay in viral rebound. This strategy should be further evaluated to better understand the underlying mechanisms for the induction of virus-specific immune responses and delay in viral rebound.


Assuntos
Antirretrovirais/farmacologia , Anticorpos Neutralizantes/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Carga Viral , Viremia/imunologia , Animais , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Viremia/tratamento farmacológico , Viremia/virologia
14.
Nature ; 543(7646): 559-563, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28289286

RESUMO

Highly potent and broadly neutralizing anti-HIV-1 antibodies (bNAbs) have been used to prevent and treat lentivirus infections in humanized mice, macaques, and humans. In immunotherapy experiments, administration of bNAbs to chronically infected animals transiently suppresses virus replication, which invariably returns to pre-treatment levels and results in progression to clinical disease. Here we show that early administration of bNAbs in a macaque simian/human immunodeficiency virus (SHIV) model is associated with very low levels of persistent viraemia, which leads to the establishment of T-cell immunity and resultant long-term infection control. Animals challenged with SHIVAD8-EO by mucosal or intravenous routes received a single 2-week course of two potent passively transferred bNAbs (3BNC117 and 10-1074 (refs 13, 14)). Viraemia remained undetectable for 56-177 days, depending on bNAb half-life in vivo. Moreover, in the 13 treated monkeys, plasma virus loads subsequently declined to undetectable levels in 6 controller macaques. Four additional animals maintained their counts of T cells carrying the CD4 antigen (CD4+) and very low levels of viraemia persisted for over 2 years. The frequency of cells carrying replication-competent virus was less than 1 per 106 circulating CD4+ T cells in the six controller macaques. Infusion of a T-cell-depleting anti-CD8ß monoclonal antibody to the controller animals led to a specific decline in levels of CD8+ T cells and the rapid reappearance of plasma viraemia. In contrast, macaques treated for 15 weeks with combination anti-retroviral therapy, beginning on day 3 after infection, experienced sustained rebound plasma viraemia when treatment was interrupted. Our results show that passive immunotherapy during acute SHIV infection differs from combination anti-retroviral therapy in that it facilitates the emergence of potent CD8+ T-cell immunity able to durably suppress virus replication.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV/imunologia , Imunização Passiva , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Modelos Animais de Doenças , Feminino , HIV/efeitos dos fármacos , HIV/isolamento & purificação , Anticorpos Anti-HIV/administração & dosagem , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/virologia , Meia-Vida , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/isolamento & purificação , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Viremia/imunologia , Viremia/terapia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
15.
Proc Natl Acad Sci U S A ; 117(31): 18754-18763, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690707

RESUMO

Treatment of HIV infection with either antiretroviral (ARV) therapy or neutralizing monoclonal antibodies (NAbs) leads to a reduction in HIV plasma virus. Both ARVs and NAbs prevent new rounds of viral infection, but NAbs may have the additional capacity to accelerate the loss of virus-infected cells through Fc gamma receptor (FcγR)-mediated effector functions, which should affect the kinetics of plasma-virus decline. Here, we formally test the role of effector function in vivo by comparing the rate and timing of plasma-virus clearance in response to a single-dose treatment with either unmodified NAb or those with either reduced or augmented Fc function. When infused into viremic simian HIV (SHIV)-infected rhesus macaques, there was a 21% difference in slope of plasma-virus decline between NAb and NAb with reduced Fc function. NAb engineered to increase FcγRIII binding and improve antibody-dependent cellular cytotoxicity (ADCC) in vitro resulted in arming of effector cells in vivo, yet led to viral-decay kinetics similar to NAbs with reduced Fc function. These studies show that the predominant mechanism of antiviral activity of HIV NAbs is through inhibition of viral entry, but that Fc function can contribute to the overall antiviral activity, making them distinct from standard ARVs.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV , HIV-1/imunologia , Receptores de IgG/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia
16.
J Infect Dis ; 225(5): 856-861, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34562096

RESUMO

We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Amplamente Neutralizantes , Linfócitos T CD4-Positivos , HIV-1/genética , Humanos , Viremia/tratamento farmacológico , Latência Viral , Vorinostat/uso terapêutico
17.
Br J Haematol ; 199(5): 679-687, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36128909

RESUMO

Patients with severe aplastic anaemia (SAA) are often not vaccinated against viruses due to concerns of ineffective protective antibody response and potential for pathogenic global immune system activation, leading to relapse. We evaluated the impact of COVID-19 vaccination on haematological indices and disease status and characterized the humoural and cellular responses to vaccination in 50 SAA patients, who were previously treated with immunosuppressive therapy (IST). There was no significant difference in haemoglobin (p = 0.52), platelet count (p = 0.67), absolute lymphocyte (p = 0.42) and neutrophil (p = 0.98) counts prior to and after completion of vaccination series. Relapse after vaccination, defined as a progressive decline in counts requiring treatment, occurred in three patients (6%). Humoural response was detectable in 90% (28/31) of cases by reduction in an in-vitro Angiotensin II Converting Enzyme (ACE2) binding and neutralization assay, even in patients receiving ciclosporin (10/11, 90.1%). Comparison of spike-specific T-cell responses in 27 SAA patients and 10 control subjects revealed qualitatively similar CD4+ Th1-dominant responses to vaccination. There was no difference in CD4+ (p = 0.77) or CD8+ (p = 0.74) T-cell responses between patients on or off ciclosporin therapy at the time of vaccination. Our data highlight appropriate humoural and cellular responses in SAA previously treated with IST and true relapse after vaccination is rare.


Assuntos
Anemia Aplástica , COVID-19 , Humanos , Anemia Aplástica/tratamento farmacológico , Ciclosporina/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Imunossupressores/uso terapêutico , COVID-19/prevenção & controle , Recidiva , Imunidade , Vacinação
18.
Eur J Immunol ; 51(10): 2485-2500, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34369597

RESUMO

The dynamics of T-cell receptor (TCR)selection in chronic HIV-1 infection, and its association with clinical outcome, is well documented for an array of MHC-peptide complexes and disease stages. However, the factors that may contribute to the selection and expansion of CD8+ T-cells in chronic HIV-2 infection, especially at the clonal level remain unclear. To address this question, we undertook a detailed molecular characterization of the clonotypic architecture of an HLA-B*3501 restricted Gag-specific CD8+ T-cell response in donors chronically infected with HIV-2 using a combination of flow cytometry, tetramer-specific CD8+ TCR clonotyping, and in vitro assays. We show that the response to the NY9 epitope is hierarchical and narrow in terms of T-cell receptor-alpha (TCRA) and -beta (TCRB) gene usage yet clonotypically diverse. Furthermore, clonotypic dominance in shared origin CTL clones was associated with a greater magnitude of cytokine production and antigen sensitivity at limiting antigen dilution as well as enhanced cross-reactivity for known HIV-2 variants. Hence, our data suggest that effector mobilization and expansion in human chronic HIV-2 infection may be linked to the qualitative features of specific CD8+ T-cell clonotypes, which could have implications for viral control and disease outcome.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-2/fisiologia , Especificidade do Receptor de Antígeno de Linfócitos T , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Motivos de Aminoácidos , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Sequência Conservada , Epitopos de Linfócito T/imunologia , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
19.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896599

RESUMO

Immunization with recombinant ALVAC/gp120 alum vaccine provided modest protection from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) acquisition in humans and macaques. Vaccine-mediated protection was associated with the elicitation of IgG against the envelope V2 loop and of envelope-specific CD4+ T cell responses. We hypothesized that the simultaneous expression of the costimulatory molecule CD40L (CD154) by the ALVAC-HIV vector could increase both protective humoral and cellular responses. We engineered an ALVAC-SIV coexpressing CD40L with SIVmac251 (ALVAC-SIV/CD40L) gag, pol, and env genes. We compared its immunogenicity in macaques with that of a canonical ALVAC-SIV, with both given as a vector-prime/gp120 in alum boost strategy. The ALVAC-SIV/CD40L was superior to the ALVAC-SIV regimen in inducing binding and tier 1 neutralizing antibodies against the gp120. The increase in humoral responses was associated with the expression of the membrane-bound form of the CD40L by CD4+ T cells in lymph nodes. Unexpectedly, the ALVAC-SIV/CD40L vector had a blunting effect on CD4+ Th1 helper responses and instead favored the induction of myeloid-derived suppressor cells, the immune-suppressive interleukin-10 (IL-10) cytokine, and the down-modulatory tryptophan catabolism. Ultimately, this strategy failed to protect macaques from SIV acquisition. Taken together, these results underlie the importance of balanced vaccine-induced activating versus suppressive immune responses in affording protection from HIV.IMPORTANCE CD40-CD40 ligand (CD40L) interaction is crucial for inducing effective cytotoxic and humoral responses against pathogens. Because of its immunomodulatory function, CD40L has been used to enhance immune responses to vaccines, including candidate vaccines for HIV. The only successful vaccine ever tested in humans utilized a strategy combining canarypox virus-based vector (ALVAC) together with an envelope protein (gp120) adjuvanted in alum. This strategy showed limited efficacy in preventing HIV-1/SIV acquisition in humans and macaques. In both species, protection was associated with vaccine-induced antibodies against the HIV envelope and CD4+ T cell responses, including type 1 antiviral responses. In this study, we tested whether augmenting CD40L expression by coexpressing it with the ALVAC vector could increase the protective immune responses. Although coexpression of CD40L did increase humoral responses, it blunted type 1 CD4+ T cell responses against the SIV envelope protein and failed to protect macaques from viral infection.


Assuntos
Vacinas contra a AIDS , Ligante de CD40 , Expressão Gênica , Vetores Genéticos , Proteína gp120 do Envelope de HIV , Imunogenicidade da Vacina , Vírus da Imunodeficiência Símia , Vacinas Virais , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Ligante de CD40/genética , Ligante de CD40/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Macaca mulatta , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
20.
PLoS Pathog ; 15(4): e1007632, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30943274

RESUMO

Chimeric Simian-Human Immunodeficiency Viruses (SHIVs) are an important tool for evaluating anti-HIV Env interventions in nonhuman primate (NHP) models. However, most unadapted SHIVs do not replicate well in vivo limiting their utility. Furthermore, adaptation in vivo often negatively impacts fundamental properties of the Env, including neutralization profiles. Transmitted/founder (T/F) viruses are particularly important to study since they represent viruses that initiated primary HIV-1 infections and may have unique attributes. Here we combined in vivo competition and rational design to develop novel subtype C SHIVs containing T/F envelopes. We successfully generated 19 new, infectious subtype C SHIVs, which were tested in multiple combinatorial pools in Indian-origin rhesus macaques. Infected animals attained peak viremia within 5 weeks ranging from 103 to 107 vRNA copies/mL. Sequence analysis during primary infection revealed 7 different SHIVs replicating in 8 productively infected animals with certain clones prominent in each animal. We then generated 5 variants each of 6 SHIV clones (3 that predominated and 3 undetectable after pooled in vivo inoculations), converting a serine at Env375 to methionine, tyrosine, histidine, tryptophan or phenylalanine. Overall, most Env375 mutants replicated better in vitro and in vivo than wild type with both higher and earlier peak viremia. In 4 of these SHIV clones (with and without Env375 mutations) we also created mutations at position 281 to include serine, alanine, valine, or threonine. Some Env281 mutations imparted in vitro replication dynamics similar to mutations at 375; however, clones with both mutations did not exhibit incremental benefit. Therefore, we identified unique subtype C T/F SHIVs that replicate in rhesus macaques with improved acute phase replication kinetics without altering phenotype. In vivo competition and rational design can produce functional SHIVs with globally relevant HIV-1 Envs to add to the growing number of SHIV clones for HIV-1 research in NHPs.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Animais , Regulação Viral da Expressão Gênica , Humanos , Macaca mulatta , Projetos de Pesquisa , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa