Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5582-5594, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921005

RESUMO

The recent success of cancer immunotherapies, such as immune checkpoint inhibitor (ICIs), monoclonal antibodies (mAbs), cancer vaccines, and adoptive cellular therapies (ACTs), has revolutionized traditional cancer treatment. However, these immunotherapeutic modalities have variable efficacies, and many of them exhibit adverse effects. Oncolytic viral Immunotherapy (OViT), whereby viruses are used to directly or indirectly induce anti-cancer immune responses, is emerging as a novel immunotherapy for treating patients with different types of cancer. The herpes simplex virus type-1 (HSV-1) possesses many characteristics that inform its use as an effective OViT agents and remains a leading candidate. Its recent clinical success resulted in the Food and Drug Administration (FDA) approval of Talimogene laherparevec (T-VEC or Imlygic) in 2015 for the treatment of advanced melanoma. In this review, we discuss recent advances in the development of oncolytic HSV-1-based OViTs, their anti-tumor mechanism of action, and efficacy data from recent clinical trials. We envision this knowledge may be used to inform the rational design and application of future oHSV in cancer treatment.

2.
J Med Virol ; 96(1): e29408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38258331

RESUMO

Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Alumínio , Enzima de Conversão de Angiotensina 2 , Infecções Irruptivas , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2
3.
Virus Genes ; 60(2): 148-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340271

RESUMO

Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.


Assuntos
Herpesviridae , Herpesvirus Humano 8 , Cricetinae , Cobaias , Humanos , Animais , Ratos , Chlorocebus aethiops , Antígenos Virais/genética , Mesocricetus , Ciclinas , Herpesvirus Humano 8/genética
4.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472938

RESUMO

HSV-1 employs cellular motor proteins and modulates kinase pathways to facilitate intracellular virion capsid transport. Previously, we and others have shown that the Akt inhibitor miltefosine inhibited virus entry. Herein, we show that the protein kinase C inhibitors staurosporine (STS) and gouml inhibited HSV-1 entry into Vero cells, and that miltefosine prevents HSV-1 capsid transport toward the nucleus. We have reported that the HSV-1 UL37 tegument protein interacts with the dynein motor complex during virus entry and virion egress, while others have shown that the UL37/UL36 protein complex binds dynein and kinesin causing a saltatory movement of capsids in neuronal axons. Co-immoprecipitation experiments confirmed previous findings from our laboratory that the UL37 protein interacted with the dynein intermediate chain (DIC) at early times post infection. This UL37-DIC interaction was concurrent with DIC phosphorylation in infected, but not mock-infected cells. Miltefosine inhibited dynein phosphorylation when added before, but not after virus entry. Inhibition of motor accessory protein dynactins (DCTN2, DCTN3), the adaptor proteins EB1 and the Bicaudal D homolog 2 (BICD2) expression using lentiviruses expressing specific shRNAs, inhibited intracellular transport of virion capsids toward the nucleus of human neuroblastoma (SK-N-SH) cells. Co-immunoprecipitation experiments revealed that the major capsid protein Vp5 interacted with dynactins (DCTN1/p150 and DCTN4/p62) and the end-binding protein (EB1) at early times post infection. These results show that Akt and kinase C are involved in virus entry and intracellular transport of virion capsids, but not in dynein activation via phosphorylation. Importantly, both the UL37 and Vp5 viral proteins are involved in dynein-dependent transport of virion capsids to the nuclei of infected cells.Importance. Herpes simplex virus type-1 enter either via fusion at the plasma membranes or endocytosis depositing the virion capsids into the cytoplasm of infected cells. The viral capsids utilize the dynein motor complex to move toward the nuclei of infected cells using the microtubular network. This work shows that inhibitors of the Akt kinase and kinase C inhibit not only viral entry into cells but also virion capsid transport toward the nucleus. In addition, the work reveals that the virion protein ICP5 (VP5) interacts with the dynein cofactor dynactin, while the UL37 protein interacts with the dynein intermediate chain (DIC). Importantly, neither Akt nor Kinase C was found to be responsible for phosphorylation/activation of dynein indicating that other cellular or viral kinases may be involved.

5.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177208

RESUMO

Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simplex virus (HSV-1). While T-Vec is associated with limited response rates, its modest efficacy supports the continued development of novel OVT viruses. Herein, we test the efficacy of a recombinant HSV-1, VC2, as an OVT in a syngeneic B16F10-derived mouse model of melanoma. VC2 possesses mutations that block its ability to enter neurons via axonal termini. This greatly enhances its safety profile by precluding the ability of the virus to establish latent infection. VC2 has been shown to be a safe, effective vaccine against both HSV-1 and HSV-2 infection in mice, guinea pigs, and nonhuman primates. We found that VC2 slows tumor growth rates and that VC2 treatment significantly enhances survival of tumor-engrafted, VC2-treated mice over control treatments. VC2-treated mice that survived initial tumor engraftment were resistant to a second engraftment as well as colonization of lungs by intravenous introduction of tumor cells. We found that VC2 treatment induced substantial increases in intratumoral T cells and a decrease in immunosuppressive regulatory T cells. This immunity was critically dependent on CD8+ T cells and less dependent on CD4+ T cells. Our data provide significant support for the continued development of VC2 as an OVT for the treatment of human and animal cancers.IMPORTANCE Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. This, in addition to the increased response rates of oncolytic virotherapy in combination with other immunotherapies, suggests that oncolytic viruses possess significant therapeutic potential for the treatment of cancer. As such, it is important to continue to develop novel oncolytic viruses as well as support basic research into their mechanisms of efficacy. Our data demonstrate significant clinical potential for VC2, a novel type 1 oncolytic herpes simplex virus. Additionally, due to the high rates of survival and the dependence on CD8+ T cells for efficacy, our model will enable study of the immunological correlates of protection for VC2 oncolytic virotherapy and oncolytic virotherapy in general. Understanding the mechanisms of efficacious oncolytic virotherapy will inform the rational design of improved oncolytic virotherapies.


Assuntos
Herpesvirus Humano 1/genética , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/prevenção & controle , Terapia Viral Oncolítica/métodos , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
6.
BMC Cancer ; 22(1): 1211, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434556

RESUMO

BACKGROUND: Vast amounts of rapidly accumulating biological data related to cancer and a remarkable progress in the field of artificial intelligence (AI) have paved the way for precision oncology. Our recent contribution to this area of research is CancerOmicsNet, an AI-based system to predict the therapeutic effects of multitargeted kinase inhibitors across various cancers. This approach was previously demonstrated to outperform other deep learning methods, graph kernel models, molecular docking, and drug binding pocket matching. METHODS: CancerOmicsNet integrates multiple heterogeneous data by utilizing a deep graph learning model with sophisticated attention propagation mechanisms to extract highly predictive features from cancer-specific networks. The AI-based system was devised to provide more accurate and robust predictions than data-driven therapeutic discovery using gene signature reversion. RESULTS: Selected CancerOmicsNet predictions obtained for "unseen" data are positively validated against the biomedical literature and by live-cell time course inhibition assays performed against breast, pancreatic, and prostate cancer cell lines. Encouragingly, six molecules exhibited dose-dependent antiproliferative activities, with pan-CDK inhibitor JNJ-7706621 and Src inhibitor PP1 being the most potent against the pancreatic cancer cell line Panc 04.03. CONCLUSIONS: CancerOmicsNet is a promising AI-based platform to help guide the development of new approaches in precision oncology involving a variety of tumor types and therapeutics.


Assuntos
Inteligência Artificial , Neoplasias Pancreáticas , Masculino , Humanos , Simulação de Acoplamento Molecular , Medicina de Precisão , Oncologia
7.
Bioorg Chem ; 107: 104595, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450548

RESUMO

Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC50 values ranging from 0.12 to < 15 µM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.


Assuntos
Antineoplásicos/farmacologia , Flavonóis/farmacologia , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonóis/síntese química , Flavonóis/química , Humanos , Melanoma/metabolismo , Melanoma/patologia , Estrutura Molecular , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
8.
J Med Virol ; 92(10): 2087-2095, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32374457

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) is the causative agent of the coronavirus disease-2019 (COVID-19) pandemic. Coronaviruses enter cells via fusion of the viral envelope with the plasma membrane and/or via fusion of the viral envelope with endosomal membranes after virion endocytosis. The spike (S) glycoprotein is a major determinant of virus infectivity. Herein, we show that the transient expression of the SARS CoV-2 S glycoprotein in Vero cells caused extensive cell fusion (formation of syncytia) in comparison to limited cell fusion caused by the SARS S glycoprotein. Both S glycoproteins were detected intracellularly and on transfected Vero cell surfaces. These results are in agreement with published pathology observations of extensive syncytia formation in lung tissues of patients with COVID-19. These results suggest that SARS CoV-2 is able to spread from cell-to-cell much more efficiently than SARS effectively avoiding extracellular neutralizing antibodies. A systematic screening of several drugs including cardiac glycosides and kinase inhibitors and inhibitors of human immunodeficiency virus (HIV) entry revealed that only the FDA-approved HIV protease inhibitor, nelfinavir mesylate (Viracept) drastically inhibited S-n- and S-o-mediated cell fusion with complete inhibition at a 10-µM concentration. In-silico docking experiments suggested the possibility that nelfinavir may bind inside the S trimer structure, proximal to the S2 amino terminus directly inhibiting S-n- and S-o-mediated membrane fusion. Also, it is possible that nelfinavir may act to inhibit S proteolytic processing within cells. These results warrant further investigations of the potential of nelfinavir mesylate to inhibit virus spread at early times after SARS CoV-2 symptoms appear.


Assuntos
Fármacos Anti-HIV/farmacologia , Fusão de Membrana/efeitos dos fármacos , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Animais , Fármacos Anti-HIV/química , Sítios de Ligação , Fusão Celular , Chlorocebus aethiops , Células Gigantes/efeitos dos fármacos , Células Gigantes/patologia , Células Gigantes/virologia , Humanos , Simulação de Acoplamento Molecular , Nelfinavir/química , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/efeitos dos fármacos , Vírion/patogenicidade , Vírion/fisiologia , Tratamento Farmacológico da COVID-19
9.
Virus Genes ; 56(1): 49-57, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31776852

RESUMO

Feline herpesvirus type 1 (FHV-1) is a widespread cause of respiratory and ocular disease in domestic cats. A spectrum of disease severity is observed in host animals, but there has been limited prior investigation into viral genome factors which could be responsible. Stocks of FHV-1 were established from oropharyngeal swabs obtained from twenty-five cats with signs of infection housed in eight animal shelters around the USA. A standardized numerical host clinical disease severity scoring scheme was used for each cat from which an isolate was obtained. Illumina MiSeq was used to sequence the genome of each isolate. Genomic homogeneity among isolates was relatively high. A general linear model for fixed effects determined that only two synonymous single nucleotide polymorphisms across two genes (UL37/39) in the same isolate (from one host animal with a low disease severity score) were significantly associated (p ≤ 0.05) with assigned host respiratory and total disease severity score. No variants in any isolate were found to be significantly associated with assigned host ocular disease severity score. A concurrent analysis of missense mutations among the viral isolates identified three genes as being primarily involved in the observed genomic variation, but none were significantly associated with host disease severity scores. An ancestral state likelihood reconstruction was performed and determined that there was no evidence of a connection between host disease severity score and viral evolutionary state. We conclude from our results that the spectrum of host disease severity observed with FHV-1 is unlikely to be primarily related to viral genomic variations, and is instead due to host response and/or other factors.


Assuntos
Doenças do Gato/virologia , Infecções por Herpesviridae/veterinária , Varicellovirus/genética , Varicellovirus/patogenicidade , Animais , Gatos , Feminino , Genoma Viral , Genômica , Infecções por Herpesviridae/virologia , Masculino , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Varicellovirus/classificação , Varicellovirus/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187538

RESUMO

UL20, an essential herpes simplex virus 1 (HSV-1) protein, is involved in cytoplasmic envelopment of virions and virus egress. We reported recently that UL20 can bind to a host protein encoded by the zinc finger DHHC-type containing 3 (ZDHHC3) gene (also known as Golgi-specific DHHC zinc finger protein [GODZ]). Here, we show for the first time that HSV-1 replication is compromised in murine embryonic fibroblasts (MEFs) isolated from GODZ-/- mice. The absence of GODZ resulted in blocking palmitoylation of UL20 and altered localization and expression of UL20 and glycoprotein K (gK); the expression of gB and gC; and the localization and expression of tegument and capsid proteins within HSV-1-infected MEFs. Electron microscopy revealed that the absence of GODZ limited the maturation of virions at multiple steps and affected the localization of virus and endoplasmic reticulum morphology. Virus replication in the eyes of ocularly HSV-1-infected GODZ-/- mice was significantly lower than in HSV-1-infected wild-type (WT) mice. The levels of UL20, gK, and gB transcripts in the corneas of HSV-1-infected GODZ-/- mice on day 5 postinfection were markedly lower than in WT mice, whereas only UL20 transcripts were reduced in trigeminal ganglia (TG). In addition, HSV-1-infected GODZ-/- mice showed notably lower levels of corneal scarring, and HSV-1 latency reactivation was also reduced. Thus, normal HSV-1 infectivity and viral pathogenesis are critically dependent on GODZ-mediated palmitoylation of viral UL20.IMPORTANCE HSV-1 infection is widespread. Ocular infection can cause corneal blindness; however, approximately 70 to 90% of American adults exposed to the virus show no clinical symptoms. In this study, we show for the first time that the absence of a zinc finger protein called GODZ affects primary and latent infection, as well as reactivation, in ocularly infected mice. The reduced virus infectivity is due to the absence of the GODZ interaction with HSV-1 UL20. These results strongly suggest that binding of UL20 to GODZ promotes virus infectivity in vitro and viral pathogenesis in vivo.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral , Animais , Linhagem Celular , Córnea/virologia , Citoplasma/virologia , Feminino , Herpesvirus Humano 1/genética , Lipoilação , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Gânglio Trigeminal/virologia , Proteínas Virais/genética
11.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724772

RESUMO

Herpes simplex virus 1 (HSV-1) UL20 plays a crucial role in the envelopment of the cytoplasmic virion and its egress. It is a nonglycosylated envelope protein that is regulated as a γ1 gene. Two-hybrid and pulldown assays demonstrated that UL20, but no other HSV-1 gene-encoded proteins, binds specifically to GODZ (also known as DHHC3), a cellular Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein. A catalytically inactive dominant-negative GODZ construct significantly reduced HSV-1 replication in vitro and affected the localization of UL20 and glycoprotein K (gK) and their interactions but not glycoprotein C (gC). GODZ is involved in palmitoylation, and we found that UL20 is palmitoylated by GODZ using a GODZ dominant-negative plasmid. Blocking of palmitoylation using 2-bromopalmitate (2-BP) affected the virus titer and the interaction of UL20 and gK but did not affect the levels of these proteins. In conclusion, we have shown that binding of UL20 to GODZ in the Golgi apparatus regulates trafficking of UL20 and its subsequent effects on gK localization and virus replication. We also have demonstrated that GODZ-mediated UL20 palmitoylation is critical for UL20 membrane targeting and thus gK cell surface expression, providing new mechanistic insights into how UL20 palmitoylation regulates HSV-1 infectivity.IMPORTANCE HSV-1 UL20 is a nonglycosylated essential envelope protein that is highly conserved among herpesviruses. In this study, we show that (i) HSV-1 UL20 binds to GODZ (also known as DHHC3), a Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein; (ii) a GODZ dominant-negative mutant and an inhibitor of palmitoylation reduced HSV-1 titers and altered the localization of UL20 and glycoprotein K; and (iii) UL20 is palmitoylated by GODZ, and this UL20 palmitoylation is required for HSV-1 infectivity. Thus, blocking of the interaction of UL20 with GODZ, using a GODZ dominant-negative mutant or possibly GODZ shRNA, should be considered a potential alternative therapy in not only HSV-1 but also other conditions in which GODZ processing is an integral component of pathogenesis.


Assuntos
Aciltransferases/metabolismo , Complexo de Golgi/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Proteínas Virais/metabolismo , Linhagem Celular Tumoral , Células HeLa , Herpes Simples/virologia , Humanos , Lipoilação/efeitos dos fármacos , Palmitatos/farmacologia , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral/fisiologia
12.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835497

RESUMO

Neurotropism is a defining characteristic of alphaherpesvirus pathogenicity. Glycoprotein K (gK) is a conserved virion glycoprotein of all alphaherpesviruses that is not found in other herpesvirus subfamilies. The extracellular amino terminus of gK has been shown to be important to the ability of the prototypic alphaherpesvirus herpes simplex virus 1 (HSV-1) to enter neurons via axonal termini. Here, we determined the role of the two conserved N-linked glycosylation (N48 and N58) sites of gK in virus-induced cell fusion and replication. We found that N-linked glycosylation is important to the regulation of HSV-1-induced membrane fusion since mutating N58 to alanine (N58A) caused extensive virus-induced cell fusion. Due to the known contributions of N-linked glycosylation to protein processing and correct disulfide bond formation, we investigated whether the conserved extracellular cysteine residues within the amino terminus of gK contributed to the regulation of HSV-1-induced membrane fusion. We found that mutation of C37 and C114 residues led to a gK-null phenotype characterized by very small plaque formation and drastic reduction in infectious virus production, while mutation of C82 and C243 caused extensive virus-induced cell fusion. Comparison of N-linked glycosylation and cysteine mutant replication kinetics identified disparate effects on infectious virion egress from infected cells. Specifically, cysteine mutations caused defects in the accumulation of infectious virus in both the cellular and supernatant fractions, while glycosylation site mutants did not adversely affect virion egress from infected cells. These results demonstrate a critical role for the N glycosylation sites and cysteines for the structure and function of the amino terminus of gK.IMPORTANCE We have previously identified important entry and neurotropic determinants in the amino terminus of HSV-1 glycoprotein K (gK). Alphaherpesvirus-mediated membrane fusion is a complex and highly regulated process that is not clearly understood. gK and UL20, which are highly conserved across all alphaherpesviruses, play important roles in the regulation of HSV-1 fusion in the context of infection. A greater understanding of mechanisms governing alphaherpesvirus membrane fusion is expected to inform the rational design of therapeutic and prevention strategies to combat herpesviral infection and pathogenesis. This work adds to the growing reports regarding the importance of gK to alphaherpesvirus pathogenesis and details important structural features of gK that are involved in gK-mediated regulation of virus-induced membrane fusion.


Assuntos
Cisteína/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Fusão de Membrana , Proteínas Virais/metabolismo , Animais , Fusão Celular , Chlorocebus aethiops , Cisteína/química , Cisteína/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Herpes Simples/metabolismo , Mutação , Células Vero , Vírion
13.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404844

RESUMO

Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/química , Herpesvirus Equídeo 1/imunologia , Vacinas contra Herpesvirus/imunologia , Doenças dos Cavalos/prevenção & controle , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Equídeo 1/genética , Vacinas contra Herpesvirus/administração & dosagem , Doenças dos Cavalos/virologia , Cavalos , Imunidade Celular , Imunidade Humoral , Imunização , Injeções Intramusculares , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
14.
Am J Pathol ; 187(12): 2811-2820, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935575

RESUMO

Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Ativação Viral/efeitos dos fármacos , Administração por Inalação , Animais , Coinfecção , HIV , Macaca mulatta , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Tuberculose/complicações , Vacinas Atenuadas/farmacologia
15.
J Virol ; 90(22): 10351-10361, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630233

RESUMO

The herpes simplex virus 1 (HSV-1) UL37 protein functions in virion envelopment at trans-Golgi membranes, as well as in retrograde and anterograde transport of virion capsids. Recently, we reported that UL37 interacts with glycoprotein K (gK) and its interacting partner protein UL20 (N. Jambunathan, D. Chouljenko, P. Desai, A. S. Charles, R. Subramanian, V. N. Chouljenko, and K. G. Kousoulas, J Virol 88:5927-5935, 2014, http://dx.doi.org/10.1128/JVI.00278-14), facilitating cytoplasmic virion envelopment. Alignment of UL37 homologs encoded by alphaherpesviruses revealed the presence of highly conserved residues in the central portion of the UL37 protein. A cadre of nine UL37 site-specific mutations were produced and tested for their ability to inhibit virion envelopment and infectious virus production. Complementation analysis revealed that replacement of tyrosines 474 and 480 with alanine failed to complement the UL37-null virus, while all other mutated UL37 genes complemented the virus efficiently. The recombinant virus DC474-480 constructed with tyrosines 474, 476, 477, and 480 mutated to alanine residues produced a gK-null-like phenotype characterized by the production of very small plaques and accumulation of capsids in the cytoplasm of infected cells. Recombinant viruses having either tyrosine 476 or 477 replaced with alanine produced a wild-type phenotype. Immunoprecipitation assays revealed that replacement of all four tyrosines with alanines substantially reduced the ability of gK to interact with UL37. Alignment of HSV UL37 with the human cytomegalovirus and Epstein-Barr virus UL37 homologs revealed that Y480 was conserved only for alphaherpesviruses. Collectively, these results suggest that the UL37 conserved tyrosine 480 residue plays a crucial role in interactions with gK to facilitate cytoplasmic virion envelopment and infectious virus production. IMPORTANCE: The HSV-1 UL37 protein is conserved among all herpesviruses, functions in both retrograde and anterograde transport of virion capsids, and plays critical roles in cytoplasmic virion envelopment by interacting with gK. We show here that UL37 tyrosine residues conserved among all alphaherpesviruses serve critical roles in cytoplasmic virion envelopment and interactions with gK.


Assuntos
Herpesvirus Humano 1/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Alanina/metabolismo , Animais , Capsídeo/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 4/metabolismo , Mutação/genética , Fenótipo , Tirosina/metabolismo , Células Vero , Vírion/metabolismo
16.
J Virol ; 90(5): 2230-9, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26656706

RESUMO

UNLABELLED: We have shown previously that herpes simplex virus 1 (HSV-1) lacking expression of the entire glycoprotein K (gK) or expressing gK with a 38-amino-acid deletion (gKΔ31-68 mutation) failed to infect ganglionic neurons after ocular infection of mice. We constructed a new model for the predicted three-dimensional structure of gK, revealing that the gKΔ31-68 mutation spans a well-defined ß-sheet structure within the amino terminus of gK, which is conserved among alphaherpesviruses. The HSV-1(McKrae) gKΔ31-68 virus was tested for the ability to enter into ganglionic neuronal axons in cell culture of explanted rat ganglia using a novel virus entry proximity ligation assay (VEPLA). In this assay, cell surface-bound virions were detected by the colocalization of gD and its cognate receptor nectin-1 on infected neuronal surfaces. Capsids that have entered into the cytoplasm were detected by the colocalization of the virion tegument protein UL37, with dynein required for loading of virion capsids onto microtubules for retrograde transport to the nucleus. HSV-1(McKrae) gKΔ31-68 attached to cell surfaces of Vero cells and ganglionic axons in cell culture as efficiently as wild-type HSV-1(McKrae). However, unlike the wild-type virus, the mutant virus failed to enter into the axoplasm of ganglionic neurons. This work suggests that the amino terminus of gK is a critical determinant for entry into neuronal axons and may serve similar conserved functions for other alphaherpesviruses. IMPORTANCE: Alphaherpesviruses, unlike beta- and gammaherpesviruses, have the unique ability to infect and establish latency in neurons. Glycoprotein K (gK) and the membrane protein UL20 are conserved among all alphaherpesviruses. We show here that a predicted ß-sheet domain, which is conserved among alphaherpesviruses, functions in HSV-1 entry into neuronal axons, suggesting that it may serve similar functions for other herpesviruses. These results are in agreement with our previous observations that deletion of this gK domain prevents the virus from successfully infecting ganglionic neurons after ocular infection of mice.


Assuntos
Axônios/virologia , Herpesvirus Humano 1/fisiologia , Deleção de Sequência , Proteínas Virais/genética , Tropismo Viral , Internalização do Vírus , Animais , Células Cultivadas , Chlorocebus aethiops , Cistos Glanglionares/virologia , Herpesvirus Humano 1/genética , Ratos Sprague-Dawley
17.
J Virol ; 88(11): 5927-35, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24600000

RESUMO

UNLABELLED: We have shown that glycoprotein K (gK) and its interacting partner, the UL20 protein, play crucial roles in virion envelopment. Specifically, virions lacking either gK or UL20 fail to acquire an envelope, thus causing accumulation of capsids in the cytoplasm of infected cells. The herpes simplex virus 1 (HSV-1) UL37 protein has also been implicated in cytoplasmic virion envelopment. To further investigate the role of UL37 in virion envelopment, the recombinant virus DC480 was constructed by insertion of a 12-amino-acid protein C (protC) epitope tag within the UL37 amino acid sequence immediately after amino acid 480. The DC480 mutant virus expressed full-size UL37 as detected by the anti-protC antibody in Western immunoblots, accumulated unenveloped capsids in the cytoplasm of infected cells, and produced very small plaques on African green monkey kidney (Vero) cells that were similar in size to those produced by the UL20-null and UL37-null viruses. The DC480 virus replicated nearly 4 log less efficiently than the parental wild-type virus when grown on Vero cells. However, DC480 mutant virus titers increased nearly 20-fold when the virus was grown on FRT cells engineered to express the UL20 gene in comparison to the titers on Vero cells, while the UL37-null virus replicated approximately 20-fold less efficiently than the DC480 virus on FRT cells. Coimmunoprecipitation experiments and proximity ligation assays showed that gK and UL20 interact with the UL37 protein in infected cells. Collectively, these results indicate that UL37 interacts with the gK-UL20 protein complex to facilitate cytoplasmic virion envelopment. IMPORTANCE: Herpes simplex viruses acquire their final envelopes by budding into cytoplasmic membranes derived from the trans-Golgi network (TGN). The tegument proteins UL36 and UL37 are known to be transported to the TGN sites of virus envelopment and to function in virion envelopment, since mutants lacking UL37 accumulate capsids in the cytoplasm that are unable to bud into TGN membranes. Viral glycoprotein K (gK) also functions in cytoplasmic envelopment, in a protein complex with the membrane-associated protein UL20 (UL20mp). This work shows for the first time that the UL37 protein functionally interacts with gK and UL20 to facilitate cytoplasmic virion envelopment. This work may lead to the design of specific drugs that can interrupt UL37 interactions with the gK-UL20 protein complex, providing new ways to combat herpesviral infections.


Assuntos
Glicoproteínas/metabolismo , Herpesvirus Humano 1/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Animais , Western Blotting , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virologia , Primers do DNA , Herpesvirus Humano 1/metabolismo , Imunoprecipitação , Microscopia Eletrônica de Transmissão , Células Vero , Proteínas Estruturais Virais/genética
18.
J Virol ; 88(13): 7618-27, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760889

RESUMO

UNLABELLED: The herpes simplex virus type 1 (HSV-1) UL20 gene encodes a 222-amino-acid nonglycosylated envelope protein which forms a complex with viral glycoprotein K (gK) that functions in virion envelopment, egress, and virus-induced cell fusion. To investigate the role of the carboxyl terminus of the UL20 protein (UL20p) in cytoplasmic virion envelopment, a cadre of mutant viruses was constructed and characterized. The deletion of six amino acids from the carboxyl terminus of UL20p caused an approximately 1-log reduction in infectious virus production compared to that of the wild-type virus. Surprisingly, a phenylalanine-to-alanine replacement at amino acid position 210 caused a gain-of-function phenotype, increasing infectious virus production up to 1 log more than in the wild-type virus. In contrast, the replacement of two membrane-proximal phenylalanines with alanines caused drastic inhibition of infectious virion production and cytoplasmic virion envelopment. Prediction of the membrane topology of UL20p revealed that these two amino acid changes cause retraction of the carboxyl terminus of UL20p from the intracellular space. Confocal microscopy revealed that none of the engineered UL20 mutations affected intracellular transport of UL20p to trans-Golgi network membranes. In addition, a proximity ligation assay showed that none of the UL20 mutations affected UL20p colocalization and potential interactions with the UL37 protein recently found to interact with the gK/UL20 protein complex. Collectively, these studies show that phenylalanine residues within the carboxyl terminus of UL20p are involved in the regulation of cytoplasmic virion envelopment and infectious virus production. IMPORTANCE: We have shown previously that the UL20/gK protein complex serves crucial roles in cytoplasmic virion envelopment and that it interacts with the UL37 tegument protein to facilitate cytoplasmic virion envelopment. In this study, we investigated the role of phenylalanine residues within the carboxyl terminus of UL20p, since aromatic and hydrophobic amino acids are known to be involved in protein-protein interactions through stacking of their aromatic structures. Characterization of mutant viruses carrying phenylalanine (Phe)-to-alanine (Ala) mutations revealed that the two membrane-proximal Phe residues were critical for the proper UL20p membrane topology and efficient virion envelopment and infectious virus production. Surprisingly, a Phe-to-Ala change located approximately in the middle of the UL20p carboxyl terminus substantially enhanced cytoplasmic envelopment and overall production of infectious virions. This work revealed that Phe residues within the UL20p carboxyl terminus are involved in the regulation of cytoplasmic virion envelopment and infectious virus production.


Assuntos
Citoplasma/virologia , Glicoproteínas/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Fenilalanina/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Animais , Fusão Celular , Chlorocebus aethiops , Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Microscopia Eletrônica , Mutação/genética , Fenótipo , Fenilalanina/genética , Células Vero , Proteínas Virais/genética , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Vírion/patogenicidade , Rede trans-Golgi
19.
Biopolymers ; 104(6): 733-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26031942

RESUMO

CD2 and CD58 are two important costimulatory molecules involved in generating the signal II required for normal immune signaling. However, this interaction can be targeted to be of benefit in cases of abnormal immune signaling seen in autoimmune diseases. Our objective in this study was to design a peptidomimetic (compound 7) based on a ß-strand structure of the adhesion domain of CD2 protein to inhibit CD2-CD58 protein-protein interaction and its effect on immunomodulation in the collagen-induced arthritis (CIA) model. The ability of compound 7 to bind to CD58 protein was assessed using flow cytometry. The effect of compound 7 on modulating the immune response was evaluated in an autoimmune disease using CIA in mice. The stability of compound 7 was evaluated in mouse serum using mass spectrometry. Antibody (Ab) binding inhibition studies suggested that compound 7 binds to CD58 protein. Compound 7 was successful in modulating immune responses when administered in the CIA mouse model along with reducing anti-collagen Ab levels and decreasing the level of interferon gamma (IFN-γ) relative to control treatments. Compound 7 was found to be nonimmunogenic and stable in mouse serum up to 48 h. Results suggest that compound 7 can serve as a lead compound for immunomodulation, and could be a therapeutic agent for the autoimmune disease rheumatoid arthritis (RA).


Assuntos
Artrite Experimental/tratamento farmacológico , Antígenos CD2/imunologia , Antígenos CD58/imunologia , Adesão Celular/efeitos dos fármacos , Colágeno/efeitos dos fármacos , Peptidomiméticos/uso terapêutico , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Ligação Competitiva , Colágeno/imunologia , Feminino , Camundongos , Camundongos Endogâmicos DBA , Peptidomiméticos/farmacologia
20.
J Virol ; 87(4): 2164-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221556

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi's sarcoma (KS) and two other lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). Kaposi's sarcoma is a highly vascular tumor, and recently both hypoxia-inducible factor 1α (HIF-1α) and HIF-2α were detected in KS samples, indicating a role of HIFs in the KSHV life cycle. Previously, we showed that ORF34, a lytic gene of unassigned function, was activated by hypoxia and that ORF34 transcription was upregulated by both HIFs (M. Haque, D. A. Davis, V. Wang, I. Widmer, and R. Yarchoan, J Virol. 77:6761-6768, 2003). In the present study, we show that coexpression of ORF34 with HIF-1αm (degradation-resistant HIF-1α) caused substantial reduction in HIF-1α-dependent transcription, as evidenced by reporter assays. Two-way immunoprecipitation experiments revealed that ORF34 physically interacted with HIF-1αm in transient expression experiments. Deletion analysis revealed that three different ORF34 domains interacted with the amino-terminal domain of HIF-1α. Also, purified HIF-1α and ORF34 proteins interacted with each other. The observed transcriptional inhibition of HIF-1α-dependent promoters was attributed to degradation of HIF-1α after binding with ORF34, since the overall amount of wild-type HIF-1α but not the degradation-resistant one (HIF-1αm) was reduced in the presence of ORF34. Moreover, ORF34 caused degradation of HIF-1α in a dose-dependent manner. Inhibition of the ubiquitin-dependent pathway by the chemical proteasome inhibitor MG132 prevented HIF-1α degradation in the presence of ORF34. These results show that ORF34 binds to HIF-1α, leading to its degradation via the proteasome-dependent pathway.


Assuntos
Herpesvirus Humano 8/patogenicidade , Interações Hospedeiro-Patógeno , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Humanos , Imunoprecipitação , Ligação Proteica , Proteólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa