Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biosystems ; 199: 104281, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33279568

RESUMO

In 1910, the Russian biologist Konstantin Sergejewitch Mereschkowsky (Константин Сергеевич Мережковский, in standard transliterations also written as Konstantin Sergeevic Merezkovskij and Konstantin Sergeevich Merezhkovsky) published a notable synthesis of observations and inferences concerning the origin of life and the origin of nucleated cells. His theory was based on physiology and leaned heavily upon the premise that thermophilic autotrophs were ancient. The ancestors of plants and animals were inferred as ancestrally mesophilic anucleate heterotrophs (Monera) that became complex and diverse through endosymbiosis. He placed a phylogenetic root in the tree of life among anaerobic autotrophic bacteria that lack chlorophyll. His higher level classification of all microbes and macrobes in the living world was based upon the presence or absence of past endosymbiotic events. The paper's primary aim was to demonstrate that all life forms descend from two fundamentally distinct organismal lineages, called mykoplasma and amoeboplasma, whose very nature was so different that, in his view, they could only have arisen independently of one another and at different times during Earth history. The mykoplasma arose at a time when the young Earth was still hot, it later gave rise to cyanobacteria, which in turn gave rise to plastids. The product of the second origin of life, the amoeboplasma, arose after the Earth had cooled and autotrophs had generated substrates for heterotrophic growth. Lineage diversification of that second plasma brought forth, via serial endosymbioses, animals (one symbiosis) and then plants (two symbioses, the second being the plastid). The paper was published in German, rendering it inaccessible to many interested scholars. Here we translate the 1910 paper in full and briefly provide some context.


Assuntos
Processos Autotróficos , Bactérias Anaeróbias/metabolismo , Núcleo Celular/metabolismo , Eucariotos/metabolismo , Plantas/metabolismo , Simbiose , Animais , Bactérias Anaeróbias/genética , Núcleo Celular/genética , Eucariotos/genética , Humanos , Filogenia , Plantas/genética , Federação Russa , Tradução
2.
Mol Biol Evol ; 25(4): 748-61, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18222943

RESUMO

Plastids are descended from a cyanobacterial symbiosis which occurred over 1.2 billion years ago. During the course of endosymbiosis, most genes were lost from the cyanobacterium's genome and many were relocated to the host nucleus through endosymbiotic gene transfer (EGT). The issue of how many genes were acquired through EGT in different plant lineages is unresolved. Here, we report the genome-wide frequency of gene acquisitions from cyanobacteria in 4 photosynthetic eukaryotes--Arabidopsis, rice, Chlamydomonas, and the red alga Cyanidioschyzon--by comparison of the 83,138 proteins encoded in their genomes with 851,607 proteins encoded in 9 sequenced cyanobacterial genomes, 215 other reference prokaryotic genomes, and 13 reference eukaryotic genomes. The analyses entail 11,569 phylogenies inferred with both maximum likelihood and Neighbor-Joining approaches. Because each phylogenetic result is dependent not only upon the reconstruction method but also upon the site patterns in the underlying alignment, we investigated how the reliability of site pattern generation via alignment affects our results: if the site patterns in an alignment differ depending upon the order in which amino acids are introduced into multiple sequence alignment--N- to C-terminal versus C- to N-terminal--then the phylogenetic result is likely to be artifactual. Excluding unreliable alignments by this means, we obtain a conservative estimate, wherein about 14% of the proteins examined in each plant genome indicate a cyanobacterial origin for the corresponding nuclear gene, with higher proportions (17-25%) observed among the more reliable alignments. The identification of cyanobacterial genes in plant genomes affords access to an important question: from which type of cyanobacterium did the ancestor of plastids arise? Among the 9 cyanobacterial genomes sampled, Nostoc sp. PCC7120 and Anabaena variabilis ATCC29143 were found to harbor collections of genes which are-in terms of presence/absence and sequence similarity-more like those possessed by the plastid ancestor than those of the other 7 cyanobacterial genomes sampled here. This suggests that the ancestor of plastids might have been an organism more similar to filamentous, heterocyst-forming (nitrogen-fixing) representatives of section IV recognized in Stanier's cyanobacterial classification. Members of section IV are very common partners in contemporary symbiotic associations involving endosymbiotic cyanobacteria, which generally provide nitrogen to their host, consistent with suggestions that fixed nitrogen supplied by the endosymbiont might have played an important role during the origin of plastids.


Assuntos
Núcleo Celular/genética , Cianobactérias/genética , Genes Bacterianos , Genoma de Planta/genética , Plantas/genética , Plastídeos/genética , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chlamydomonas/genética , Sequência Conservada , Transferência Genética Horizontal , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Oryza/genética , Filogenia , Rodófitas/genética , Alinhamento de Sequência , Simbiose/genética
3.
FEBS Lett ; 577(3): 535-8, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15556642

RESUMO

Peridinin-containing dinoflagellates, a group of alveolate organisms, harbour small plasmids called minicircles. As most of these minicircles encode genes of cyanobacterial origin, which are also found in plastid genomes of stramenopiles, they were thought to represent the plastid genome of peridinin-containing dinoflagellates. The analyses of minicircle derived mRNAs and the 16S rRNA showed that extensive editing of minicircle gene transcripts is common for Ceratium horridum. Posttranscriptional changes occur predominantly by editing A into G, but other types of editing including a previously unreported A to C transversion were also detected. This leads to amino acid changes in most cases or, in one case, to the elimination of a stop-codon. Interestingly, the edited mRNAs show higher identities to homologous sequences of other peridinin-containing dinoflagellates than their genomic copy. Thus, our results imply that transcript editing of genes of cyanobacterial origin is species specific in peridinin-containing dinoflagellates and demonstrate that editing of genes of cyanobacterial origin is not restricted to land plants.


Assuntos
DNA Circular/genética , Dinoflagellida/genética , Genes Bacterianos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Códon de Terminação/química , Cianobactérias/genética , Dinoflagellida/classificação , Dinoflagellida/crescimento & desenvolvimento , Dados de Sequência Molecular , Plasmídeos , Processamento de Proteína Pós-Traducional , Edição de RNA , RNA Mensageiro/análise , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA Ribossômico 16S/análise , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa