Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768751

RESUMO

Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.


Assuntos
Aminoaciltransferases , Fitoquelatinas , Fitoquelatinas/metabolismo , Metais , Quelantes , Plantas/metabolismo , Cádmio/metabolismo , Enxofre , Aminoaciltransferases/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446000

RESUMO

Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.


Assuntos
Metais , Zinco , Humanos , Zinco/metabolismo , Ferro/metabolismo , Homeostase
3.
Plant J ; 97(2): 306-320, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288820

RESUMO

Calamine accessions of the zinc/cadmium/nickel hyperaccumulator, Noccaea caerulescens, exhibit striking variation in foliar cadmium accumulation in nature. The Ganges accession (GA) from Southern France displays foliar cadmium hyperaccumulation (>1000 µg g-1 DW), whereas the accession La Calamine (LC) from Belgium, with similar local soil metal composition, does not (<100 µg g-1 DW). All calamine accessions are cadmium hypertolerant. To find out the differences between LC and GA in their basic adaptation mechanisms, we bypassed the cadmium excluding phenotype of LC by exposing the plants to 50 µm cadmium in hydroponics, achieving equal cadmium accumulation in the shoots. The iron content increased in the roots of both accessions. GA exhibited significant decreases in manganese and zinc contents in the roots and shoots, approaching those in LC. Altogether 702 genes responded differently to cadmium exposure between the accessions, 157 and 545 in the roots and shoots, respectively. Cadmium-exposed LC showed a stress response and had decreased levels of a wide range of photosynthesis-related transcripts. GA showed less changes, mainly exhibiting an iron deficiency-like response. This included increased expression of genes encoding five iron deficiency-regulated bHLH transcription factors, ferric reduction oxidase FRO2, iron transporters IRT1 and OPT3, and nicotianamine synthase NAS1, and decreased expression of genes encoding ferritins and NEET (a NEET family iron-sulfur protein), which is possibly involved in iron transfer, distribution and/or management. The function of the IRT1 gene in the accessions was compared. We conclude that the major difference between the two accessions is in the way they cope with iron under cadmium exposure.


Assuntos
Brassicaceae/genética , Cádmio/metabolismo , Ferro/metabolismo , Transcriptoma , Brassicaceae/fisiologia , Produtos Agrícolas , Homeostase , Hidroponia , Deficiências de Ferro , Metais/metabolismo , Fotossíntese/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , RNA-Seq , Thlaspi/genética , Thlaspi/fisiologia , Zinco/metabolismo
4.
Chem Biodivers ; 17(1): e1900588, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782898

RESUMO

One of the mechanisms of plant adaptation to combined stress under conditions of altitudinal zonation is changing the lipid fatty acid (FA) composition. The main changes in the FA composition occurred in the outer cell layers of the pericarp, but not in the parenchyma. Adaptation was found to be species-specific. In Cydonia oblonga Mill. and Malus domestica Borkh., the ratio of polyunsaturated 18:2 and 18:3 lipid FAs changed with increasing height, while a constitutive level of the unsaturation index (UI) and low contents of very-long-chain fatty acids (VLCFAs) were maintained. Mespilus germanica L. was characterized by a higher level of VLCFAs due to the high content of 20:0. The sum of VLCFAs in medlar increased by up to 16 % with changing altitude, which was accompanied by the changes in the ultrastructure of chloroplasts and a noticeable decrease in the UI. We attribute the differences in the adaptive strategies in C. oblonga, M. domestica and M. germanica to specific structural features of the pericarp peel. Despite different adaptation mechanisms, the studied species can grow equally successfully at the altitudes from 300 to 1200 m.


Assuntos
Aclimatação , Altitude , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Rosaceae/química , Rosaceae/metabolismo
5.
New Phytol ; 203(2): 508-519, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24750120

RESUMO

Histidine plays a crucial role in nickel (Ni) translocation in Ni-hyperaccumulating plants. Here, we investigated its role in zinc (Zn) translocation in four accessions of the Zn hyperaccumulator, Noccaea caerulescens, using the related non-hyperaccumulator, Thlaspi arvense, as a reference. We compared the effects of exogenous histidine supply on Zn xylem loading, and of Zn-histidine complex formation on Zn uptake in energized tonoplast vesicles. The Zn distribution patterns over root tissues were also compared. Exogenous histidine supply enhanced Zn xylem loading in all the N. caerulescens accessions, but decreased it in T. arvense. Zn distribution patterns over root tissues were similar, apart from the accumulation in cortical and endodermal cells, which was much lower in N. caerulescens than in T. arvense. Zn uptake in energized tonoplast vesicles was inhibited significantly in N. caerulescens, but not affected significantly in T. arvense, when Zn was supplied in combination with histidine in a 1:2 molar ratio. Histidine-mediated Zn xylem loading seems to be a species-wide character in N. caerulescens. It may well have evolved as a component trait of the hyperaccumulation machinery for Zn, rather than for Ni.


Assuntos
Brassicaceae/metabolismo , Xilema/metabolismo , Zinco/farmacocinética , Brassicaceae/efeitos dos fármacos , Histidina , Transporte de Íons , Compostos Organometálicos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Especificidade da Espécie , Thlaspi/efeitos dos fármacos , Thlaspi/metabolismo , Distribuição Tecidual , Zinco/metabolismo
6.
Plant Physiol Biochem ; 197: 107640, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36958152

RESUMO

This pilot study aimed at comparing zinc (Zn) and nickel (Ni) effects on the fatty acid (FA) profiles, oxidative stress and desaturase activity in the Zn hyperaccumulator Arabidopsis halleri and the excluder Arabidopsis lyrata to allow a better picture of the physiological mechanisms which may contribute to metal tolerance or acclimation. The most significant changes in the FA composition were observed in the shoots of the hyperaccumulator and in the roots of the excluder, and were not only metal-dependent, but also species-specific, since the most significant changes in the shoots of A. halleri were observed under Ni treatment, though Ni, in contrast to Zn, was accumulated mainly in its roots. Several FAs appeared in the roots and shoots of A. lyrata only upon metal exposure, whereas they were already found in control A. halleri. In both species, there was an increase in oleic acid under Ni treatment in both organs, whereas in Zn-treated plants the increase was shown only for the shoots. A rare conjugated α-parinaric acid was identified only in the shoots of metal-treated A. halleri. In the shoots of the hyperaccumulator, there was an increase in the content of saturated FAs and a decrease in the content of unsaturated FAs, while in the roots of the excluder, the opposite pattern was observed. These metal-induced changes in FA composition in the shoots of A. halleri can lead to a decrease in the fluidity of membranes, which could diminish the penetration of ROS into the membrane and thus maintain its stability.


Assuntos
Arabidopsis , Arabidopsis/fisiologia , Zinco/farmacologia , Níquel/toxicidade , Ácidos Graxos/farmacologia , Projetos Piloto , Metais , Cádmio/farmacologia
7.
Ecol Lett ; 12(8): 758-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19500130

RESUMO

The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.


Assuntos
Adaptação Fisiológica/fisiologia , Corydalis/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Neve , Marcação por Isótopo , Isótopos de Nitrogênio/metabolismo , Raízes de Plantas/anatomia & histologia , Federação Russa
8.
New Phytol ; 183(1): 106-116, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19368671

RESUMO

* The mechanisms of enhanced root to shoot metal transport in heavy metal hyperaccumulators are incompletely understood. Here, we compared the distribution of nickel (Ni) over root segments and tissues in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi arvense, and investigated the role of free histidine in Ni xylem loading and Ni transport across the tonoplast. * Nickel accumulation in mature cortical root cells was apparent in T. arvense and in a high-Ni-accumulating T. caerulescens accession, but not in a low-accumulating T. caerulescens accession. * Compared with T. arvense, the concentration of free histidine in T. caerulescens was 10-fold enhanced in roots, but was only slightly higher in leaves, regardless of Ni exposure. Nickel uptake in MgATP-energized root- and shoot-derived tonoplast vesicles was almost completely blocked in T. caerulescens when Ni was supplied as a 1 : 1 Ni-histidine complex, but was uninhibited in T. arvense. Exogenous histidine supply enhanced Ni xylem loading in T. caerulescens but not in T. arvense. * The high rate of root to shoot translocation of Ni in T. caerulescens compared with T. arvense seems to depend on the combination of two distinct characters, that is, a greatly enhanced root histidine concentration and a strongly decreased ability to accumulate histidine-bound Ni in root cell vacuoles.


Assuntos
Adaptação Biológica/fisiologia , Histidina/metabolismo , Transporte de Íons/fisiologia , Níquel/metabolismo , Raízes de Plantas/metabolismo , Thlaspi/metabolismo , Vacúolos/metabolismo , Níquel/toxicidade , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Thlaspi/efeitos dos fármacos , Xilema/fisiologia
10.
Plant Signal Behav ; 9(9): e29580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763695

RESUMO

Histidine is known to be involved in Ni hyperaccumulation. Recently, histidine-dependent xylem loading of Ni and Zn has been demonstrated in the Zn/Ni/Cd hyperaccumulator, Noccaea caerulescens. Here we tested the hypothesis whether Cd xylem loading is histidine-dependent, too. In contrast to that of Ni and Zn, the xylem loading of Cd was not affected by exogenous histidine. Histidine accumulation in root cells appears to facilitate the radial transport of Ni and Zn, but not Cd, across the roots. This may be due to the relatively high preference of Cd for coordination with sulfur over coordination with nitrogen, in comparison with Ni and Zn.


Assuntos
Brassicaceae/metabolismo , Cádmio/metabolismo , Histidina/metabolismo , Níquel/metabolismo , Xilema/metabolismo , Zinco/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Brassicaceae/citologia , Brassicaceae/efeitos dos fármacos , Histidina/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Xilema/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa