Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119764, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100867

RESUMO

Indoor air, especially with suspended particulate matter (PM), can be a carrier of airborne infectious pathogens. Without sufficient ventilation, airborne infectious diseases can be transmitted from one person to another. Indoor air quality (IAQ) significantly impacts people's daily lives as people spend 90% of their time indoors. An industrial-grade air cleaner prototype (filtration + ultraviolet light) was previously upgraded to clean indoor air to improve IAQ on two metrics: particulate matter (PM) and viable airborne bacteria. Previous experiments were conducted to test its removal efficiency on PM and airborne bacteria between the inlet and treated air. However, the longer-term improvement on IAQ would be more informative. Therefore, this research focused on quantifying longer-term improvement in a testing environment (poultry facility) loaded with high and variable PM and airborne bacteria concentrations. A 25-day experiment was conducted to treat indoor air using an air cleaner prototype with intermittent ON and OFF days in which PM and viable airborne bacteria were measured to quantify the treatment effect. The results showed an average of 55% reduction of total suspended particulate (TSP) concentration between OFF days (110 µg/m3) and ON days (49 µg/m3). An average of 47% reduction of total airborne viable bacteria concentrations was achieved between OFF days (∼3200 CFU/m3) and ON days (∼2000 CFU/m3). A cross-validation (CV) model was established to predict PM concentrations with five input variables, including the status of the air cleaner, time (h), ambient temperature, indoor relative humidity, and day of the week to help simulate the air-cleaning effect of this prototype. The model can approximately predict the air quality trend, and future improvements may be made to improve its accuracy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Raios Ultravioleta , Melhoria de Qualidade , Bactérias , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Tamanho da Partícula
2.
J Environ Manage ; 287: 112235, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33721761

RESUMO

Phosphorus (P) is a limited yet essential resource. P cannot be replaced, but it can be recovered from waste. We proposed the TRIZ approach (Teoria reszenija izobretatielskich zadacz - Rus., Theory of Inventive Problem Solving - Eng.) to identify a feasible solution. We aimed at minimizing the environmental impact and, by eliminating contradictions, proposed viable technical solutions. P recovery can be more sustainable based on circular economy and 4Rs (reduction, recovery, reuse, and recycling). The TRIZ approach identified sewage sludge (SS) as waste with a large potential for P recovery (up to 90%). Successful selection and application of SS management and P recovery require a transdisciplinary approach to overcome the various socio-economic, environmental, technical, and legal aspects. The review provides an understanding of principles that must be taken to improve understanding of the whole process of P recovery from wastewater while building on the last two decades of research.


Assuntos
Fósforo , Águas Residuárias , Reciclagem , Esgotos , Eliminação de Resíduos Líquidos
3.
Molecules ; 24(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717185

RESUMO

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Assuntos
Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Vitis/metabolismo , Compostos Orgânicos Voláteis/isolamento & purificação , Fazendas , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Humanos , Iowa , Análise Multivariada , Polivinil , Análise de Componente Principal , South Dakota , Vitis/química , Vitis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/classificação , Vinho/análise
4.
Molecules ; 24(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678060

RESUMO

Finding farm-proven, robust sampling technologies for measurement of odorous volatile organic compounds (VOCs) and evaluating the mitigation of nuisance emissions continues to be a challenge. The objective of this research was to develop a new method for quantification of odorous VOCs in air using time-weighted average (TWA) sampling. The main goal was to transform a fragile lab-based technology (i.e., solid-phase microextraction, SPME) into a rugged sampler that can be deployed for longer periods in remote locations. The developed method addresses the need to improve conventional TWA SPME that suffers from the influence of the metallic SPME needle on the sampling process. We eliminated exposure to metallic parts and replaced them with a glass tube to facilitate diffusion from odorous air onto an exposed SPME fiber. A standard gas chromatography (GC) liner recommended for SPME injections was adopted for this purpose. Acetic acid, a common odorous VOC, was selected as a model compound to prove the concept. GC with mass spectrometry (GC⁻MS) was used for air analysis. An SPME fiber exposed inside a glass liner followed the Fick's law of diffusion model. There was a linear relationship between extraction time and mass extracted up to 12 h (R² > 0.99) and the inverse of retraction depth (1/Z) (R² > 0.99). The amount of VOC adsorbed via the TWA SPME using a GC glass liner to protect the SPME was reproducible. The limit of detection (LOD, signal-to-noise ratio (S/N) = 3) and limit of quantification (LOQ, S/N = 5) were 10 and 18 µg·m-3 (4.3 and 7.2 ppbV), respectively. There was no apparent difference relative to glass liner conditioning, offering a practical simplification for use in the field. The new method related well to field conditions when comparing it to the conventional method based on sorbent tubes. This research shows that an SPME fiber exposed inside a glass liner can be a promising, practical, simple approach for field applications to quantify odorous VOCs.


Assuntos
Monitoramento Ambiental , Odorantes/análise , Compostos Orgânicos Voláteis/química , Fibras na Dieta , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Manejo de Espécimes
5.
Molecules ; 23(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563101

RESUMO

In this work, for the first time, the volatile organic compound (VOC) emissions from carbonized refuse-derived fuel (CRDF) were quantified on a laboratory scale. The analyzed CRDF was generated from the torrefaction of municipal waste. Headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was used to identify 84 VOCs, including many that are toxic, e.g., derivatives of benzene or toluene. The highest emissions were measured for nonanal, octanal, and heptanal. The top 10 most emitted VOCs contributed to almost 65% of the total emissions. The VOC mixture emitted from torrefied CRDF differed from that emitted by other types of pyrolyzed biochars, produced from different types of feedstock, and under different pyrolysis conditions. SPME was a useful technology for surveying VOC emissions. Results provide an initial database of the types and relative quantities of VOCs emitted from CRDF. This data is needed for further development of CRDF technology and comprehensive assessment of environmental impact and practical storage, transport, and potential adoption of CRDF as means of energy and resource recovery from municipal waste.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Carbono/química , Resíduos/análise
6.
Molecules ; 23(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360543

RESUMO

Determination of time-weighted average (TWA) concentrations of volatile organic compounds (VOCs) in air using solid-phase microextraction (SPME) is advantageous over other sampling techniques, but is often characterized by insufficient accuracies, particularly at longer sampling times. Experimental investigation of this issue and disclosing the origin of the problem is problematic and often not practically feasible due to high uncertainties. This research is aimed at developing the model of the TWA extraction process and optimization of TWA air sampling by SPME using finite element analysis software (COMSOL Multiphysics, Burlington, MA, USA). It was established that sampling by porous SPME coatings with high affinity to analytes is affected by slow diffusion of analytes inside the coating, an increase of their concentrations in the air near the fiber tip due to equilibration, and eventual lower sampling rate. The increase of a fiber retraction depth (Z) resulted in better recoveries. Sampling of studied VOCs using 23 ga Carboxen/polydimethylsiloxane (Car/PDMS) assembly at maximum possible Z (40 mm) was proven to provide more accurate results. Alternative sampling configuration based on 78.5 × 0.75 mm internal diameter SPME liner was proven to provide similar accuracy at improved detection limits. Its modification with the decreased internal diameter from the sampling side should provide even better recoveries. The results obtained can be used to develop a more accurate analytical method for determination of TWA concentrations of VOCs in air using SPME. The developed model can be used to simulate sampling of other environments (process gases, water) by retracted SPME fibers.


Assuntos
Ar/análise , Análise de Elementos Finitos , Software , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental
7.
Molecules ; 21(7)2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27347921

RESUMO

Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC) composition and odors emitted by total marking fluid (MF) associated with Siberian tigers (Panthera tigris altaica). Siberian tiger, an endangered species, was chosen because its MF had never been analyzed. Solid phase microextraction (SPME) for headspace volatile collection combined with multidimensional gas chromatography-mass spectrometry-olfactometry for simultaneous chemical and sensory analyses were used. Thirty-two VOCs emitted from MF were identified. 2-acetyl-1-pyrroline, the sole previously identified compound responsible for the "characteristic" odor of P. tigris MF, was identified along with two additional compounds confirmed with standards (urea, furfural) and four tentatively identified compounds (3-methylbutanamine, (R)-3-methylcyclopentanone, propanedioic acid, and 3-hydroxybutanal) as being responsible for the characteristic aroma of Siberian tiger MF. Simultaneous chemical and sensory analyses improved characterization of scent-markings and identified compounds not previously reported in MF of other tiger species. This research will assist animal ecologists, behaviorists, and zookeepers in understanding how scents from specific MF compounds impact tiger and wildlife communication and improve management practices related to animal behavior. Simultaneous chemical and sensory analyses is applicable to unlocking scent-marking information for other species.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfatometria , Feromônios/análise , Feromônios/química , Microextração em Fase Sólida , Tigres , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
8.
J Air Waste Manag Assoc ; 65(12): 1434-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453185

RESUMO

UNLABELLED: Industry-standard Tedlar bags for odor sample collection from confined animal feeding operations (CAFOs) have been challenged by the evidence of volatile organic compound (VOC) losses and background interferences. Novel impermeable aluminum foil with a thin layer of fluorinated ethylene propylene (FEP) film on the surface that is in contact with a gas sample was developed to address this challenge. In this research, Tedlar and metallized FEP bags were compared for (a) recoveries of four characteristic CAFO odorous VOCs (ethyl mercaptan, butyric acid, isovaleric acid and p-cresol) after 30 min and 24 hr sample storage time and for (b) chemical background interferences. All air sampling and analyses were performed with solid-phase microextraction (SPME) followed by gas chromatography-mass spectroscopy (GC-MS). Mean target gas sample recoveries from metallized FEP bags were 25.9% and 28.0% higher than those in Tedlar bags, for 30 min and 24 hr, respectively. Metallized FEP bags demonstrated the highest p-cresol recoveries after 30-min and 24-hr storage, 96.1±44.5% and 44.8±10.2%, respectively, among different types of sampling bags reported in previous studies. However, a higher variability was observed for p-cresol recovery with metallized FEP bags. A 0% recovery of ethyl mercaptan was observed with Tedlar bags after 24-hr storage, whereas an 85.7±7.4% recovery was achieved with metallized FEP bags. Recoveries of butyric and isovaleric acids were similar for both bag types. Two major impurities in Tedlar bags' background were identified as N,N-dimethylacetamide and phenol, while backgrounds of metallized FEP bags were significantly cleaner. Reusability of metallized FEP bags was tested. IMPLICATIONS: Caution is advised when using polymeric materials for storage of livestock-relevant odorous volatile organic compounds. The odorants loss with storage time confirmed that long-term storage in whole-air form is ill advised. A focused short-term odor sample containment should be biased toward the most inert material available relative to the highest impact target odorant. Metallized FEP was identified as such a material to p-cresol as the highest impact odorant from confined animal feeding operations. Metallized FEP bags have much cleaner background than commercial Tedlar bags do. Significantly higher recoveries of methyl mercaptan and p-cresol were also observed with metallized FEP bags.


Assuntos
Alcenos/química , Gases/química , Odorantes/análise , Polímeros/química , Compostos Orgânicos Voláteis/química , Adsorção , Poluentes Atmosféricos/análise , Animais , Animais Domésticos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Fatores de Tempo
9.
Sensors (Basel) ; 14(3): 4428-65, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24603639

RESUMO

In conjoining the disciplines of "ethology" and "chemistry" the field of "Ethochemistry" has been instituted. Ethochemistry is an effective tool in conservation efforts of endangered species and the understanding of behavioral patterns across all species. Chemical constituents of scent-markings have an important, yet poorly understood function in territoriality, reproduction, dominance, and impact on evolutionary biology, especially in large mammals. Particular attention has recently been focused on scent-marking analysis of great cats (Kalahari leopards (Panthera pardus), puma (Puma concolor) snow leopard (Panthera uncia), African lions (Panthera leo), cheetahs (Acinonyx jubatus), and tigers (Panthera tigris)) for the purpose of conservation. Sensory analyses of scent-markings could address knowledge gaps in ethochemistry. The objective of this review is to summarize the current state-of-the art of both the chemical and sensory analyses of scent-markings in wild mammals. Specific focus is placed on sampling and sample preparation, chemical analysis, sensory analysis, and simultaneous chemical and sensory analyses. Constituents of exocrine and endocrine secretions have been most commonly studied with chromatography-based analytical separations. Odor analysis of scent-markings provides an insight into the animal's sensory perception. A limited number of articles have been published in the area of sensory characterization of scent marks. Simultaneous chemical and sensory analyses with chromatography-olfactometry hyphenation could potentially aid conservation efforts by linking perceived odor, compounds responsible for odor, and resulting behavior.


Assuntos
Animais Selvagens/metabolismo , Técnicas de Química Analítica/métodos , Mamíferos/metabolismo , Odorantes/análise , Glândulas Odoríferas/química , Animais
10.
PLoS One ; 19(3): e0290206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457366

RESUMO

To date, only a few studies focused on the carbon monoxide (CO) production during waste composting; all targeted on CO inside piles. Here, the CO net emissions from compost piles and the assessment of worker's occupational risk of exposure to CO at large-scale composting plants are shown for the first time. CO net emissions were measured at two plants processing green waste, sewage sludge, or undersize fraction of municipal solid waste. Effects of the location of piles (hermetised hall vs. open yard) and turning (before vs. after) were studied. Higher CO net emission rates were observed from piles located in a closed hall. The average CO flux before turning was 23.25 and 0.60 mg‧m-2‧h-1 for hermetised and open piles, respectively, while after- 69.38 and 5.11 mg‧m-2‧h-1. The maximum CO net emissions occurred after the compost was turned (1.7x to 13.7x higher than before turning). The top sections of hermetised piles had greater CO emissions compared to sides. Additionally, 5% of measurement points of hermetised piles switched to 'CO sinks'. The 1-h concentration in hermetised composting hall can reach max. ~50 mg CO∙m-3 before turning, and >115 mg CO∙m-3 after, exceeding the WHO thresholds for a 1-h and 15-min exposures, respectively.


Assuntos
Compostagem , Exposição Ocupacional , Monóxido de Carbono , Solo , Resíduos Sólidos
11.
ACS Omega ; 9(27): 29290-29299, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005806

RESUMO

A critical prelude to any community odor assessment should be the prioritization of specific chemical odorants that are most responsible for targeted downwind odors. Unfortunately, and historically, this is a step that has often been bypassed or overlooked. However, correct understanding of the specific impactful volatile organic compounds (VOCs) can inform the follow-on sampling, analytical, and remediation strategies that are most appropriate and efficient, based upon the chemistry behind the issue. With this understanding, the techniques and sampling strategies presented herein should be viewed as a qualitative prelude rather than an addendum to a follow-up routine, automated downwind odor monitoring. Downwind odor characteristics can vary depending upon the size of the upwind source, interim topography, and wind conditions. At one extreme, the downwind odor plume from a relatively large source located on a flat open plain and under stable, near-straight line wind conditions can be rather broad, sustained, and predictable. In contrast, the plume from a small point source (e.g., a roof vent stack) located on irregular topography and under rapidly shifting wind conditions can be intermittent and fleeting ("spikes" or "bursts"). These transient odor events can be surprisingly intense and offensive, despite their fleeting occurrence and perception. This work reports on improving and optimizing an environmental sampling strategy for odorant prioritization from such transient downwind odor conditions. This optimization addresses the challenges of (1) sampling of transient odor "spikes" and (2) prioritizing odors/odorants from multiple, closely colocated point sources under transient event conditions. Prioritizing is defined as identifying the key impactful odorants downwind. Grab air sampling protocol refinement has emerged from actual community environmental odor assessment projects. The challenge of assessing transient odor events has been mitigated by utilizing (a) rapid, odor-cued whole-air grab sampling (i.e., activated by and synchronous with the perceived sensory spikes) into metalized fluorinated ethylene polymer (m-FEP) gas sampling bags; (b) immediate transfer from bags onto solid-phase microextraction (SPME) fibers or sorbent tubes; and (c) maintaining refrigerated storage and shipment conditions between field collection and in-laboratory analysis. Results demonstrated approximately 11-fold increases in target odorant yields for 900 mL air sample capture on sorbent tube transfers from 2 to 3 s "burst" odor event bag captures compared to equivalent direct collections (with sorbent tubes) at the same downwind receptor location but during perceived (stable) odor "lull" periods. An application targeting general odor sampling and point-source differentiation utilizing tracer gases is also presented.

12.
Front Bioeng Biotechnol ; 11: 1126737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845185

RESUMO

Carbon monoxide (CO) is an essential "building block" for producing everyday chemicals on industrial scale. Carbon monoxide can also be generated though a lesser-known and sometimes forgotten biorenewable pathways that could be explored to advance biobased production from large and more sustainable sources such as bio-waste treatment. Organic matter decomposition can generate carbon monoxide both under aerobic and anaerobic conditions. While anaerobic carbon monoxide generation is relatively well understood, the aerobic is not. Yet many industrial-scale bioprocesses involve both conditions. This review summarizes the necessary basic biochemistry knowledge needed for realization of initial steps towards biobased carbon monoxide production. We analyzed for the first time, the complex information about carbon monoxide production during aerobic, anaerobic bio-waste treatment and storage, carbon monoxide-metabolizing microorganisms, pathways, and enzymes with bibliometric analysis of trends. The future directions recognizing limitations of combined composting and carbon monoxide production have been discussed in greater detail.

13.
Animals (Basel) ; 13(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766257

RESUMO

In cheetahs, age at first parturition correlates negatively with reproductive lifespan (asymmetric reproductive aging); therefore, breeding cheetahs at a young age is essential to maximize reproductive performance in this species. However, younger females display a significantly reduced frequency of copulatory behaviour, which negatively affects breeding. Volatile organic compounds (VOCs) are known to regulate appropriate behavioural responses in various species, including reproductive behaviour; moreover, they have proven to play a role in captive breeding methods in cheetahs, as well as mate choice. Therefore, the objective of this study was to evaluate the effect of a synthetic scent (SS) on the frequency of the five oestrous behaviour(s) (sniff, rub, roll, spray, and meow-chirp) known to be indicative of oestrus in female cheetahs. Based on the results of a previous study from our research group, five VOCs, identified in the marking fluid of male cheetahs, and known to be pheromones involved in reproductive behaviour, were used to create the SS. This was accomplished by mixing benzaldehyde, acetophenone, indole, dimethyl disulphide and phenol with (99.9%) ethanol. Seven female cheetahs were then observed for one oestrus cycle without stimulation (control) and then once again while exposed to the SS (treatment), which was sprayed on foil trays placed around the outside of each enclosure. The occurrence of the five oestrous behaviours was recorded and tallied per day of observations. Although the SS did not have a significant effect on the frequency of oestrous behaviours displayed by the females used in this study, five of the seven (71%) did show an increase in their behaviour with the SS when oestrogen concentrations were at their highest (peak oestrus), including three of the four younger females. The SS also significantly increased the sniffing behaviour in general. Although the results of this study do indicate that VOCs influence cheetahs and their behaviour, firm conclusions cannot be drawn due to the low number of animals used, as well as the significant effect the observation methods had on the results. Nonetheless, this study represents the first of this kind in cheetahs, therefore representing an important step in determining the role of VOCs in aiding breeding in captivity.

14.
J Environ Qual ; 52(4): 897-906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758189

RESUMO

Numerous studies have investigated effects of long-term manure application on total phosphorus (P) and inorganic P (Pi ), but few have evaluated soil organic P (Po ). Little is known about crop management effects on Po in soils with varying minerology. In this study, sequential fractionation was used to characterize specific P forms after 25 years of broiler litter (BL) or ammonium nitrate (Con) applications to an Alabama Hartsells soil. Crops (corn [Zea mays L.], soybean [Glycine Willd.], and corn or soybean with a wheat [Triticum aestivum L.] cover crop) were under conventional tillage (CT) or no-tillage (NT). Regardless of crop, tillage, or fertilizer type, the proportion of extractable Pi was relatively stable at 21%-49% at 0-5 cm and 25%-45% at 5-10 cm. Extractable Pi ranged from 0.69 to 2.4 mg g-1 . BL increased total extractable Pi (p ≤ 0.001) at 0-5 cm and 5-10 cm. Total extractable P was influenced at 0-5 cm (p ≤ 0.006) by both tillage and fertilization type, but not at 5-10 cm or at either depth in soybean plots. Long-term BL application increased total extractable soil P at 0-5 cm. In corn systems, CT did not reduce P loading to topsoil or result in P leaching to lower soil depths, compared to NT. Soybean and soybean-wheat reduced P loading in BL plots, compared to corn and corn-wheat. Soil Po was classed in the order of monoesters > phytate and polyphosphates, where most was extractable with NaOH. BL increased extractable Po in all fractions. Care should be taken when applying BL to highly weathered soils to avoid legacy Po accumulation. Soybean rotations and cover crops could help remediate P-laden soils after repeated BL application.


Assuntos
Agricultura , Solo , Animais , Alabama , Fósforo , Esterco , Galinhas , Produtos Agrícolas , Glycine max , Zea mays , Fertilizantes , Triticum
15.
J Environ Qual ; 41(1): 281-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22218196

RESUMO

The feasibility of using deep ultraviolet (UV) treatment for abatement of ammonia (NH(3)) in livestock and poultry barn exhaust air was examined in a series of laboratory-scale experiments. These experiments simulated moving exhaust air through an irradiation chamber with variables of UV wavelength and dose, NH(3) concentrations, humidity, and presence of hydrogen sulfide (H(2)S). Ammonia, initially at relevant barn exhaust concentrations in air, was substantially or completely reduced by irradiation with 185 nm light. Reactions were monitored using chemiluminescence detection, gas chromatography with mass spectrometry detection, and Fourier transform infrared spectrometry, of which the latter was found to be the most informative and flexible. Detected nitrogen-containing products included N(2)O, NH(4)NO(3), and HNO(3). It was presumed that atomic oxygen is the primary photochemical product that begins the oxidative cascade. The data show that removal of NH(3) is plausible, but they highlight concerns over pollution swapping due to formation of ozone and N(2)O.


Assuntos
Poluentes Atmosféricos/química , Amônia/química , Gado , Aves Domésticas , Raios Ultravioleta , Animais , Abrigo para Animais , Umidade , Sulfeto de Hidrogênio/química , Espectrometria de Massas , Óxido Nitroso/química , Fatores de Tempo , Ventilação
16.
Anal Chim Acta ; 1206: 339565, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473862

RESUMO

Diagnosis of diseases in cattle at early stages is of significance both economically and clinically. Non-invasive diagnostic samples such as breath are preferred since they cause minimum inconvenience or pain to the animals. In this review, different sampling devices, sample preparation techniques, instrumentation, and statistical analysis approaches that have been designed and tested are described and compared in terms of their applicability in the diagnosis of common cattle diseases. The sample preparation techniques used include solid-phase microextraction (SPME), sorbent extraction, and needle trap device (NTD). The collected volatile organic compounds (VOCs) are determined using gas chromatography-mass spectrometry (GC-MS) and the electronic nose (e-nose) technology. The majority of studies are focused on the diagnosis of ketosis and bovine respiratory disease (BRD). The common diseases and potential biomarkers are summarized and discussed. Due to the differences in the number of subjects and the type of animals used in different studies, the results are not consistent. Acetone, although detected in almost all studies and subjects, has elevated concentrations in cattle suffering from ketosis. The results of currently available studies were not indicative of specific biomarkers for BRD, and further investigation is required. The current studies have shortcomings in regards to defining useful VOC profiles, the impact on animal welfare, and the practical application at the producer level. While the presented approaches are promising, more controlled, standardized clinical studies need to be conducted before breath analysis can be routinely performed on cattle.


Assuntos
Doenças dos Bovinos , Cetose , Compostos Orgânicos Voláteis , Animais , Biomarcadores , Testes Respiratórios , Bovinos , Doenças dos Bovinos/diagnóstico , Humanos , Cetose/diagnóstico , Cetose/veterinária , Compostos Orgânicos Voláteis/análise
17.
Animals (Basel) ; 12(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36078003

RESUMO

Scent is known to play an important role in the reproduction of cheetahs and other felids. In fact, the presence/odor of a male cheetah has been noted to trigger the estrous cycle in females. The objective of this study was to analyze the marking fluid (MF) of male cheetahs from different breeding groups to determine the composition of volatile organic compounds (VOCs) present, with the aim of identifying potential pheromones relating to sexual behavior/attraction in this species. Four breeding (B; age: 8.9 ± 1.3 years old) and four non-breeding (NB; age: 5.5 ± 0.8 years old) males were selected for this study. Samples were collected into a glass beaker, transferred immediately into a 20 mL glass screw-cap vial with a polytetrafluoroethylene (PTFE) coated silicone septum, and stored until analyzed by headspace solid-phase microextraction (HS-SPME) using gas chromatography-mass spectrometry. A contingency test with Fisher's exact test, using the frequency (FREQ) procedure of SAS 9.4, was conducted to determine the difference between the number of VOCs identified per breeding group; furthermore, differences in relative concentration (RC) of the identified VOCs between breeding groups were analyzed using ANOVA for repeated measures with the GLIMMIX procedure. From the 13 MF samples analyzed, 53 VOCs were identified, and 12 were identified in all the samples. Five of these (dimethyl disulfide, benzaldehyde, acetophenone, phenol, and indole) are known to be involved in attraction/sexual behavior in mammals. Between the two groups, the RC of indole was significantly higher in the NB group, whereas the RC of dodecanoic acid was significantly higher in the B group. Although not significant, the RC of benzaldehyde was higher in the B versus the NB group. The results of this study do support the hypothesis of differences in VOCs' between B and NB male cheetahs. However, the overlapping of age and breeding status and the diet differences could not be controlled. Still, the evidence of changes in MF composition in male cheetahs necessitates further studies on possible strategies to improve reproduction in captivity.

18.
ACS Omega ; 7(23): 19043-19047, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722010

RESUMO

Although the "skunky" odor characteristic of cannabis has been widely referenced, its cause has been historically misassigned to unspecified "skunky terpenes". Recent reports from two independent research groups, the Koziel team (March and April 2021) and Oswald team (August and November 2021), have corrected this misassignment by linking the "skunky" character of industrial hemp and cannabis to 3-methyl-2-butene-1-thiol (321MBT). A recent USPTO patent application review clearly indicated that the Oswald team should take full credit for the discovery of this link with respect to cannabis. However, the August 19, 2021 publication of their patent application appears to be their formal public disclosure of 321MBT as the primary source odorant which is responsible for the targeted "skunky" odor. This date is well after the March and April 2021 public disclosures by the Koziel team for the 321MBT/"skunky" odor link relative to both cannabis and industrial hemp. This Viewpoint summarizes the investigative strategy leading to the public disclosure of this historically elusive link. It is presented from the perspective of the rapid multidimensional-gas chromatography-mass spectrometry-olfactometry (i.e., MDGC-MS-O) based odorant-prioritization "screening" approach, as applied by the Koziel team.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36498208

RESUMO

Since the COVID-19 pandemic, improving indoor air quality (IAQ) has become vital for the public as COVID-19 and other infectious diseases can transmit via inhalable aerosols. Air cleaning devices with filtration and targeted pollutant treatment capabilities can help improve IAQ. However, only a few filtration/UV devices have been formally tested for their effectiveness, and little data is publicly available and UV doses comparable. In this research, we upgraded a particulate matter (PM) air filtration prototype by adding UV-C (germicidal) light. We developed realistic UV dose metrics for fast-moving air and selected performance scenarios to quantify the mitigation effect on viable airborne bacteria and PM. The targeted PM included total suspended particulate (TSP) and a coarse-to-fine range sized at PM10, PM4, PM2.5, and PM1. The PM and viable airborne bacteria concentrations were compared between the inlet and outlet of the prototype at 0.5 and 1.0 m3/s (low and high) air flow modes. The upgraded prototype inactivated nearly 100% of viable airborne bacteria and removed up to 97% of TSP, 91% of PM10, 87% of PM4, 87% of PM2.5, and 88% of PM1. The performance in the low flow rate mode was generally better than in the high flow rate mode. The combination of filtration and UV-C treatment provided 'double-barrier' assurance for air purification and lowered the risk of spreading infectious micro-organisms.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Material Particulado/análise , Pandemias , Tamanho da Partícula , COVID-19/prevenção & controle , Aerossóis e Gotículas Respiratórios , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Bactérias , Poluentes Atmosféricos/análise , Monitoramento Ambiental
20.
Chromatographia ; 73(1-2): 123-128, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21423319

RESUMO

Formaldehyde dimethylhydrazone (FADMH) is one of the important transformation products of residual rocket fuel 1,1-dimethylhydrazine (1,1-DMH). Thus, recent studies show that FADMH toxicity is comparable to that of undecomposed 1,1-DMH. In this study, a new method for quantification of FADMH in water based on solid phase microextraction (SPME) in combination with gas chromatography (GC) with mass spectrometric (MS) and nitrogen-phosphorus detection (NPD) is presented. Effects of SPME fiber coating type, extraction and desorption temperatures, extraction time, and pH on analyte recovery were studied. The optimized method used 65 micron polydimethylsiloxane/divinylbenzene fiber coating for 1 min headspace extractions at 30 °C. Preferred pH and desorption temperature from the SPME fiber are >8.5 and 200 °C, respectively. Detection limits were estimated to be 1.5 and 0.5 µg L(-1) for MS and NPD, respectively. The method was applied to laboratory-scale experiments to quantify FADMH. Results indicate applicability for in situ sampling and analysis and possible first-time detection of free FADMH in water.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa