Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504954

RESUMO

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

2.
Agron Sustain Dev ; 43(6): 75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969112

RESUMO

Early energy analyses of agriculture revealed that behind higher labor and land productivity of industrial farming, there was a decrease in energy returns on energy (EROI) invested, in comparison to more traditional organic agricultural systems. Studies on recent trends show that efficiency gains in production and use of inputs have again somewhat improved energy returns. However, most of these agricultural energy studies have focused only on external inputs at the crop level, concealing the important role of internal biomass flows that livestock and forestry recirculate within agroecosystems. Here, we synthesize the results of 82 farm systems in North America and Europe from 1830 to 2012 that for the first time show the changing energy profiles of agroecosystems, including livestock and forestry, with a multi-EROI approach that accounts for the energy returns on external inputs, on internal biomass reuses, and on all inputs invested. With this historical circular bioeconomic approach, we found a general trend towards much lower external returns, little or no increases in internal returns, and almost no improvement in total returns. This "energy trap" was driven by shifts towards a growing dependence of crop production on fossil-fueled external inputs, much more intensive livestock production based on feed grains, less forestry, and a structural disintegration of agroecosystem components by increasingly linear industrial farm managements. We conclude that overcoming the energy trap requires nature-based solutions to reduce current dependence on fossil-fueled external industrial inputs and increase the circularity and complexity of agroecosystems to provide healthier diets with less animal products. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00925-5.

3.
Glob Chang Biol ; 28(1): 307-322, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651392

RESUMO

Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.


Assuntos
Carbono , Ecossistema , Humanos
4.
Proc Natl Acad Sci U S A ; 114(8): 1880-1885, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167761

RESUMO

Human-made material stocks accumulating in buildings, infrastructure, and machinery play a crucial but underappreciated role in shaping the use of material and energy resources. Building, maintaining, and in particular operating in-use stocks of materials require raw materials and energy. Material stocks create long-term path-dependencies because of their longevity. Fostering a transition toward environmentally sustainable patterns of resource use requires a more complete understanding of stock-flow relations. Here we show that about half of all materials extracted globally by humans each year are used to build up or renew in-use stocks of materials. Based on a dynamic stock-flow model, we analyze stocks, inflows, and outflows of all materials and their relation to economic growth, energy use, and CO2 emissions from 1900 to 2010. Over this period, global material stocks increased 23-fold, reaching 792 Pg (±5%) in 2010. Despite efforts to improve recycling rates, continuous stock growth precludes closing material loops; recycling still only contributes 12% of inflows to stocks. Stocks are likely to continue to grow, driven by large infrastructure and building requirements in emerging economies. A convergence of material stocks at the level of industrial countries would lead to a fourfold increase in global stocks, and CO2 emissions exceeding climate change goals. Reducing expected future increases of material and energy demand and greenhouse gas emissions will require decoupling of services from the stocks and flows of materials through, for example, more intensive utilization of existing stocks, longer service lifetimes, and more efficient design.

5.
Glob Environ Change ; 52: 131-140, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30679887

RESUMO

The size and structure of the socioeconomic metabolism are key for the planet's sustainability. In this article, we provide a consistent assessment of the development of material flows through the global economy in the period 1900-2015 using material flow accounting in combination with results from dynamic stock-flow modelling. Based on this approach, we can trace materials from extraction to their use, their accumulation in in-use stocks and finally to outflows of wastes and emissions and provide a comprehensive picture of the evolution of societies metabolism during global industrialization. This enables outlooks on inflows and outflows, which environmental policy makers require for pursuing strategies towards a more sustainable resource use. Over the whole time period, we observe a growth in global material extraction by a factor of 12 to 89 Gt/yr. A shift from materials for dissipative use to stock building materials resulted in a massive increase of in-use stocks of materials to 961 Gt in 2015. Since materials increasingly accumulate in stocks, outflows of wastes are growing at a slower pace than inputs. In 2015, outflows amounted to 58 Gt/yr, of which 35% were solid wastes and 25% emissions, the reminder being excrements, dissipative use and water vapor. Our results indicate a significant acceleration of global material flows since the beginning of the 21st century. We show that this acceleration, which took off in 2002, was not a short-term phenomenon but continues since more than a decade. Between 2002 and 2015, global material extraction increased by 53% in spite of the 2008 economic crisis. Based on detailed data on material stocks and flows and information on their long-term historic development, we make a rough estimate of what a global convergence of metabolic patterns at the current level in industrialized countries paired with a continuation of past efficiency gains might imply for global material demand. We find that in such a scenario until 2050 average global metabolic rates double to 22 t/cap/yr and material extraction increases to around 218 Gt/yr. Overall the analysis indicates a grand challenge calling for urgent action, fostering a continuous and considerable reduction of material flows to acceptable levels.

6.
Reg Environ Change ; 18(4): 937-950, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258412

RESUMO

We investigate agroecosystem energy flows in two Upper Austrian regions, the lowland region Sankt Florian and the prealpine region Grünburg, at five time points between 1830 and 2000. Energetic agroecosystem productivity (energy contents of crops, livestock products, and wood per unit area) is compared to different types of energy inputs, i.e., external inputs from society (labor, industrial inputs, and external biomass inputs) and biomass reused from the local agroecosystem (feed, litter, and seeds). Energy transfers between different compartments of the agroecosystem (agricultural land, forest, and livestock) are also quantified. This allows for delineating an agroecosystem energy transition: In the first stage of this transition, i.e., in the nineteenth century, agroecosystem productivity was low (final produce ranged between 14 and 27 GJ/ha/yr), and local biomass reused made up 97% of total energy inputs in both regions (25-61 GJ/ha/yr). In this period, agroecosystem productivity increase was achieved primarily through more recycling of energy flows within the agroecosystems. In the second stage of the agroecosystem energy transition, i.e., after World War II, external energy inputs increased by factors 2.5 (Sankt Florian) and 5.0 (Grünburg), partly replacing local energy transfers. Final produce per area increased by factors 6.1 (Sankt Florian) and 2.9 (Grünburg). The difference in the resulting energy returns on investment (EROI) owes to regional specialization on cropping versus livestock rearing and to increasing market integration. Our results suggest that sustainable land-use intensification may benefit from some regional specialization harnessing local production potentials based on a mix of local and external inputs.

7.
Proc Natl Acad Sci U S A ; 110(25): 10324-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733940

RESUMO

Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity. This work analyzes trends in HANPP from 1910 to 2005 and finds that although human population has grown fourfold and economic output 17-fold, global HANPP has only doubled. Despite this increase in efficiency, HANPP has still risen from 6.9 Gt of carbon per y in 1910 to 14.8 GtC/y in 2005, i.e., from 13% to 25% of the net primary production of potential vegetation. Biomass harvested per capita and year has slightly declined despite growth in consumption because of a decline in reliance on bioenergy and higher conversion efficiencies of primary biomass to products. The rise in efficiency is overwhelmingly due to increased crop yields, albeit frequently associated with substantial ecological costs, such as fossil energy inputs, soil degradation, and biodiversity loss. If humans can maintain the past trend lines in efficiency gains, we estimate that HANPP might only grow to 27-29% by 2050, but providing large amounts of bioenergy could increase global HANPP to 44%. This result calls for caution in refocusing the energy economy on land-based resources and for strategies that foster the continuation of increases in land-use efficiency without excessively increasing ecological costs of intensification.


Assuntos
Agricultura/tendências , Ciclo do Carbono , Conservação dos Recursos Naturais/tendências , Demografia/tendências , Desenvolvimento Econômico/tendências , Biomassa , Planeta Terra , Ecossistema , Humanos
8.
Proc Natl Acad Sci U S A ; 110(18): 7342-7, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589873

RESUMO

Rapid economic development in the past century has translated into severe pressures on species survival as a result of increasing land-use change, environmental pollution, and the spread of invasive alien species. However, though the impact of these pressures on biodiversity is substantial, it could be seriously underestimated if population declines of plants and animals lag behind contemporary environmental degradation. Here, we test for such a delay in impact by relating numbers of threatened species appearing on national red lists to historical and contemporary levels of socioeconomic pressures. Across 22 European countries, the proportions of vascular plants, bryophytes, mammals, reptiles, dragonflies, and grasshoppers facing medium-to-high extinction risks are more closely matched to indicators of socioeconomic pressures (i.e., human population density, per capita gross domestic product, and a measure of land use intensity) from the early or mid-, rather than the late, 20th century. We conclude that, irrespective of recent conservation actions, large-scale risks to biodiversity lag considerably behind contemporary levels of socioeconomic pressures. The negative impact of human activities on current biodiversity will not become fully realized until several decades into the future. Mitigating extinction risks might be an even greater challenge if temporal delays mean many threatened species might already be destined toward extinction.


Assuntos
Extinção Biológica , Animais , Espécies em Perigo de Extinção , Europa (Continente) , Humanos , Modelos Biológicos , Análise Multivariada , Fatores Socioeconômicos , Especificidade da Espécie
9.
Glob Environ Change ; 26: 87-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25844026

RESUMO

Since the World War II, many economies have transitioned from an agrarian, biomass-based to an industrial, minerals-based metabolic regime. Since 1950, world population grew by factor 2.7 and global material consumption by factor 3.7-71 Gigatonnes per year in 2010. The expansion of the resource base required by human societies is associated with growing pressure on the environment and infringement on the habitats of other species. In order to achieve a sustainability transition, we require a better understanding of the currently ongoing metabolic transition and its potential inertia. In this article, we present a long-term global material flow dataset covering material extraction, trade, and consumption of 177 individual countries between 1950 and 2010. We trace patterns and trends in material flows for six major geographic and economic country groupings and world regions (Western Industrial, the (Former) Soviet Union and its allies, Asia, the Middle East and Northern Africa, Latin America and the Caribbean, and Sub-Saharan Africa) as well as their contribution to the emergence of a global metabolic profile during a period of rapid industrialization and globalization. Global average material use increased from 5.0 to 10.3 tons per capita and year (t/cap/a) between 1950 and 2010. Regional metabolic rates range from 4.5 t/cap/a in Sub-Saharan Africa to 14.8 t/cap/a in the Western Industrial grouping. While we can observe a stabilization of the industrial metabolic profile composed of relatively equal shares of biomass, fossil energy carriers, and construction minerals, we note differences in the degree to which other regions are gravitating toward a similar form of material use. Since 2000, Asia has overtaken the Western Industrial grouping in terms of its share in global resource use although not in terms of its per capita material consumption. We find that at a sub-global level, the roles of the world regions have changed. There are, however, no signs yet that this will lead to stabilization or even a reduction of global resource use.

10.
Proc Natl Acad Sci U S A ; 108(1): 203-7, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173227

RESUMO

Globalization and economic growth are widely recognized as important drivers of biological invasions. Consequently, there is an increasing need for governments to address the role of international trade in their strategies to prevent species introductions. However, many of the most problematic alien species are not recent arrivals but were introduced several decades ago. Hence, current patterns of alien-species richness may better reflect historical rather than contemporary human activities, a phenomenon which might be called "invasion debt." Here, we show that across 10 taxonomic groups (vascular plants, bryophytes, fungi, birds, mammals, reptiles, amphibians, fish, terrestrial insects, and aquatic invertebrates) in 28 European countries, current numbers of alien species established in the wild are indeed more closely related to indicators of socioeconomic activity from the year 1900 than to those from 2000, although the majority of species introductions occurred during the second half of the 20th century. The strength of the historical signal varies among taxonomic groups, with those possessing good capabilities for dispersal (birds, insects) more strongly associated with recent socioeconomic drivers. Nevertheless, our results suggest a considerable historical legacy for the majority of the taxa analyzed. The consequences of the current high levels of socioeconomic activity on the extent of biological invasions will thus probably not be completely realized until several decades into the future.


Assuntos
Fungos/crescimento & desenvolvimento , Atividades Humanas/história , Espécies Introduzidas/economia , Espécies Introduzidas/história , Espécies Introduzidas/tendências , Invertebrados/crescimento & desenvolvimento , Desenvolvimento Vegetal , Vertebrados/crescimento & desenvolvimento , Animais , Bases de Dados Factuais , Demografia , Europa (Continente) , História do Século XX , História do Século XXI , Humanos , Modelos Estatísticos , Dinâmica Populacional , Análise de Regressão , Fatores Socioeconômicos/história , Fatores de Tempo
11.
Sustain Sci ; : 1-18, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36789006

RESUMO

Urbanization processes are accompanied by growing global challenges for food systems. Urban actors are increasingly striving to address these challenges through a focus on sustainable diets. However, transforming food systems towards more sustainable diets is challenging and it is unclear what the local scope of action might be. Co-production of knowledge between science and non-science is particularly useful for analysing context-specific solutions and promise to result in more robust socio-economic, political and technical solutions. Thus, this paper aims to integrate different types and sources of knowledge to understand urban food systems transformation towards a more sustainable diet in Vienna; and, second, to analyse and reflect on the difficulties and ways forward to integrate diverse actors' perspectives, multiple methods and epistemologies. We created different future scenarios that illustrate the synergies and trade-offs of various bundles of measures and the interactions among single dimensions of sustainable diets. These scenarios show that there is plenty of scope for local action, but co-ordination across diverse groups, interests, and types of knowledge is necessary to overcome lock-ins.

12.
Sci Total Environ ; 861: 160576, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36462656

RESUMO

With ongoing global urbanization processes and consumption patterns increasingly recognized as key determinants of environmental change, a better understanding of the links between urban consumption and biodiversity loss is paramount. Here we quantify the global biodiversity footprint (BDF) of Vienna's (Austria) biomass consumption. We present a state-of-the-art product specific approach to (a) locate the production areas required for Vienna's consumption and map Vienna's BDF by (b) linking them with data taken from a previously published countryside Species-Area-Relationship (cSAR) model with a representation of land-use intensity. We found that food has the largest share in Vienna's BDF (58 %), followed by biomass for material applications (28 %) and bioenergy (13 %). The total BDF occurs predominantly within Austria and in its neighbouring countries, with ~20 % located outside Europe. Although the per capita biomass consumption in Vienna is above the global average, global and Viennese per capita BDFs are roughly equal, indicating that Vienna sources its products from high-yield regions with efficient production systems and comparatively low native species richness. We conclude that, among others, dietary changes offer a key leverage point for reducing the urban BDF, while expanding the use of biomass for material and energy use may increase the BDF and requires appropriate monitoring.


Assuntos
Biodiversidade , Urbanização , Cidades , Biomassa , Áustria
13.
Ecol Econ ; 76-341(100): 60-69, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23565033

RESUMO

India's economic growth in the last decade has raised several concerns in terms of its present and future resource demands for materials and energy. While per capita resource consumption is still extremely modest but on the rise, its sheer population qualifies India as a fast growing giant with material and energy throughput that is growing rapidly . If such national and local trends continue, the challenges for regional, national as well as global sustainability are immense in terms of future resource availability, social conflicts, pressure on land and ecosystems and atmospheric emissions. Using the concepts of social metabolism and material flow analysis, this paper presents an original study quantifying resource use trajectories for India from 1961 up to 2008. We argue for India's need to grow in order to be able to provide a reasonable material standard of living for its vast population. To this end, the challenge is in avoiding the precarious path so far followed by industrialised countries in Europe and Asia, but to opt for a regime shift towards sustainability in terms of resource use by building on a host of promising examples and taking opportunities of existing niches to make India a trendsetter.

14.
Ecol Econ ; 77(100): 129-138, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23565034

RESUMO

The 'human appropriation of net primary production' (HANPP) is an integrated socio-ecological indicator measuring effects of land use on ecological biomass flows. Based on published data for Austria, Hungary, the Philippines, South Africa, Spain and the UK, this paper investigates long-term trends in aboveground HANPP and discusses the relations between population, economic growth, changes in biomass use and land-use intensity and their influences on national HANPP trajectories. During early stages of industrialization, population growth and increasing demand for biomass drive land-cover change, often resulting in deforestation, which raises HANPP. During later stages, industrialization of agriculture boosts agricultural yields often faster than biomass demand grows, resulting in stable or even declining HANPP. Technological change improves agricultural area-efficiency (biomass provision per unit area), thereby decoupling population and economic growth from HANPP. However, these efficiency gains require large inputs of fossil fuels and agrochemicals resulting in pressures on ecosystems and emissions. Our findings corroborate the argument that HANPP alone cannot - as sometimes suggested - be used as a simple measure of carrying capacity. Nevertheless, analyses of long-term HANPP trajectories in combination with accounts of material and energy flows can provide important insights into the sustainability of land use, thereby helping to understand limits to growth.

15.
Ecol Indic ; 23(3): 222-231, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23470886

RESUMO

Indicators of resource use such as material and energy flow accounts, emission data and the ecological footprint inform societies about their performance by evaluating resource use efficiency and the effectiveness of sustainability policies. The human appropriation of net primary production (HANPP) is an indicator of land-use intensity on each nation's territory used in research as well as in environmental reports. 'Embodied HANPP' (eHANPP) measures the HANPP anywhere on earth resulting from a nation's domestic biomass consumption. The objectives of this article are (i) to study the relation between eHANPP and other resource use indicators and (ii) to analyse socioeconomic and natural determinants of global eHANPP patterns in the year 2000. We discuss a statistical analysis of >140 countries aiming to better understand these relationships. We found that indicators of material and energy throughput, fossil-energy related CO2 emissions as well as the ecological footprint are highly correlated with each other as well as with GDP, while eHANPP is neither correlated with other resource use indicators nor with GDP, despite a strong correlation between final biomass consumption and GDP. This can be explained by improvements in agricultural efficiency associated with GDP growth. Only about half of the variation in eHANPP can be explained by differences in national land-use systems, suggesting a considerable influence of trade on eHANPP patterns. eHANPP related with biomass trade can largely be explained by differences in natural endowment, in particular the availability of productive area. We conclude that eHANPP can deliver important complimentary information to indicators that primarily monitor socioeconomic metabolism.

16.
MethodsX ; 9: 101654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402170

RESUMO

International datasets on economy-wide material flows currently fail to comprehensively cover the quantitatively most important materials and countries, to provide centennial coverage and to differentiate between processing stages. These data gaps hamper research and policy on resource use. Herein, we present and document the data processing and compilation procedures applied to develop a novel economy-wide database of primary stock-building material flows systematically covering 177 countries from 1900- 2016. The main methodological novelty is the consistent integration of material flow accounting and analysis principles and thereby addresses limitations in terms of transparency, data quality and uncertainty treatment. The database systematically discerns four processing stages from raw materials extraction, to processing of raw and semi-finished products, to manufacturing of stock-building materials. Included materials are concrete, asphalt, bricks, timber products, paper, iron & steel, aluminium, copper, lead, zinc, other metals, plastics, container and flat glass. The database is compiled using international and national data sources, using a transparent and consistent 10-step procedure, as well as a systematic uncertainty assessment. Apart from a detailed documentation of the data compilation, validations of the database using data from previous studies and additional uncertainty estimates are presented. • Systematically compiled historical database of primary stock-building material flows for 177 countries. • Consistent integration of economy-wide material flow accounting and detailed material flow analysis principles. • Methodological enhancements in terms of transparency, data quality and uncertainty treatment.

17.
Nat Commun ; 13(1): 615, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105884

RESUMO

Land-use has transformed ecosystems over three quarters of the terrestrial surface, with massive repercussions on biodiversity. Land-use intensity is known to contribute to the effects of land-use on biodiversity, but the magnitude of this contribution remains uncertain. Here, we use a modified countryside species-area model to compute a global account of the impending biodiversity loss caused by current land-use patterns, explicitly addressing the role of land-use intensity based on two sets of intensity indicators. We find that land-use entails the loss of ~15% of terrestrial vertebrate species from the average 5 × 5 arcmin-landscape outside remaining wilderness areas and ~14% of their average native area-of-habitat, with a risk of global extinction for 556 individual species. Given the large fraction of global land currently used under low land-use intensity, we find its contribution to biodiversity loss to be substantial (~25%). While both sets of intensity indicators yield similar global average results, we find regional differences between them and discuss data gaps. Our results support calls for improved sustainable intensification strategies and demand-side actions to reduce trade-offs between food security and biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Vertebrados , Agricultura , Animais , Ecossistema
18.
Environ Sci Technol ; 45(4): 1169-76, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21210661

RESUMO

Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.


Assuntos
Conservação dos Recursos Naturais , Combustíveis Fósseis , Modelos Teóricos , Biomassa , Meio Ambiente
19.
Biomass Bioenergy ; 35(12): 4753-4769, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22211004

RESUMO

There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a "food first" approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO(2) on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y(-1), depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply.

20.
J Ind Ecol ; 23(1): 62-76, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31007502

RESUMO

The concept of a circular economy (CE) is gaining increasing attention from policy makers, industry, and academia. There is a rapidly evolving debate on definitions, limitations, the contribution to a wider sustainability agenda, and a need for indicators to assess the effectiveness of circular economy measures at larger scales. Herein, we present a framework for a comprehensive and economy-wide biophysical assessment of a CE, utilizing and systematically linking official statistics on resource extraction and use and waste flows in a mass-balanced approach. This framework builds on the widely applied framework of economy-wide material flow accounting and expands it by integrating waste flows, recycling, and downcycled materials. We propose a comprehensive set of indicators that measure the scale and circularity of total material and waste flows and their socioeconomic and ecological loop closing. We applied this framework in the context of monitoring efforts for a CE in the European Union (EU28) for the year 2014. We found that 7.4 gigatons (Gt) of materials were processed in the EU and only 0.71 Gt of them were secondary materials. The derived input socioeconomic cycling rate of materials was therefore 9.6%. Further, of the 4.8 Gt of interim output flows, 14.8% were recycled or downcycled. Based on these findings and our first efforts in assessing sensitivity of the framework, a number of improvements are deemed necessary: improved reporting of wastes, explicit modeling of societal in-use stocks, introduction of criteria for ecological cycling, and disaggregated mass-based indicators to evaluate environmental impacts of different materials and circularity initiatives.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa