Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 425(3): 567-73, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19888915

RESUMO

It has been supposed that the HA (haemagglutinin) of influenza virus must be recruited to membrane rafts to perform its function in membrane fusion and virus budding. In the present study, we aimed at substantiating this association in living cells by biophysical methods. To this end, we fused the cyan fluorescent protein Cer (Cerulean) to the cytoplasmic tail of HA. Upon expression in CHO (Chinese-hamster ovary) cells HA-Cer was glycosylated and transported to the plasma membrane in a similar manner to authentic HA. We measured FLIM-FRET (Förster resonance energy transfer by fluorescence lifetime imaging microscopy) and showed strong association of HA-Cer with Myr-Pal-YFP (myristoylated and palmitoylated peptide fused to yellow fluorescent protein), an established marker for rafts of the inner leaflet of the plasma membrane. Clustering was significantly reduced when rafts were disintegrated by cholesterol extraction and when the known raft-targeting signals of HA, the palmitoylation sites and amino acids in its transmembrane region, were removed. FRAP (fluorescence recovery after photobleaching) showed that removal of raft-targeting signals moderately increased the mobility of HA in the plasma membrane, indicating that the signals influence access of HA to slowly diffusing rafts. However, Myr-Pal-YFP exhibited a much faster mobility compared with HA-Cer, demonstrating that HA and the raft marker do not diffuse together in a stable raft complex for long periods of time.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Hemaglutininas/química , Microdomínios da Membrana/química , Orthomyxoviridae/metabolismo , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transdução de Sinais
2.
J Biol Chem ; 284(23): 15708-16, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19349276

RESUMO

Influenza virus hemagglutinin (HA) has been suggested to be enriched in liquid-ordered lipid domains named rafts, which represent an important step in virus assembly. We employed Förster resonance energy transfer (FRET) via fluorescence lifetime imaging microscopy to study the interaction of the cytoplasmic and transmembrane domain (TMD) of HA with agly co sylphos pha tidyl ino si tol (GPI)-anchored peptide, an established marker for rafts in the exoplasmic leaflet of living mammalian plasma membranes. Cyan fluorescent protein (CFP) was fused to GPI, whereas the HA sequence was tagged with yellow fluorescent protein (YFP) on its exoplasmic site (TMD-HA-YFP), avoiding any interference of fluorescent proteins with the proposed role of the cytoplasmic domain in lateral organization of HA. Constructs were expressed in Chinese hamster ovary cells (CHO-K1) for which cholesterol-sensitive lipid nanodomains and their dimension in the plasma membrane have been described (Sharma, P., Varma, R., Sarasij, R. C., Ira, Gousset, K., Krishnamoorthy, G., Rao, M., and Mayor, S. (2004) Cell 116, 577-589). Upon transfection in CHO-K1 cells, TMD-HA-YFP is partially expressed as a dimer. Only dimers are targeted to the plasma membrane. Clustering of TMD-HA-YFP with GPI-CFP was observed and shown to be reduced upon cholesterol depletion, a treatment known to disrupt rafts. No indication for association of TMD-HA-YFP with GPI-CFP was found when palmitoylation, an important determinant of raft targeting, was suppressed. Clustering of TMD-HA-YFP and GPI-CFP was also observed in purified plasma membrane suspensions by homoFRET. We concluded that the pal mit oy lated TMD-HA alone is sufficient to recruit HA to cholesterol-sensitive nanodomains. The corresponding construct of the spike protein E2 of Semliki Forest virus did not partition preferentially in such domains.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Sequência de Aminoácidos , Membrana Celular/virologia , Dimerização , Células Epiteliais/virologia , Transferência Ressonante de Energia de Fluorescência , Genes Reporter , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Cinética , Proteínas Luminescentes/química , Microdomínios da Membrana/química , Dados de Sequência Molecular , Orthomyxoviridae/química
3.
Chemistry ; 13(1): 300-10, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17024704

RESUMO

Double-stranded DNA offers multiple binding sites to DNA stains. Measurements of noncovalently bound dye-nucleic acid complexes are, necessarily, measurements of an ensemble of chromophores. Thus, it is difficult to assign fluorescence properties to base-pair-specific binding modes of cyanine dyes or, vice versa, to obtain information about the local environment of cyanines in nucleic acids by using optical spectroscopy. The feasibility to stain DNA and simultaneously probe local perturbations by optical spectroscopy would be a valuable asset to nucleic acid research. So-called FIT probes (forced intercalation probes) were used to pinpoint the location of the DNA stain thiazole orange (TO) in PNADNA duplexes. A detailed analysis of the base-pair dependence of optical properties is provided and enforced binding of TO is compared with "classical" binding of free TO-PRO1. UV-visible absorbance, circular dichroism (CD) and fluorescence spectroscopy, and melting-curve analyses confirmed site-specific TO intercalation. Thiazole orange exhibited base-specific responses that are not observed in noncovalent dye-nucleic acid complexes, such as an extraordinary dependence of the TO extinction coefficient (+/-60 % variation of the averaged epsilon(max) of 57,000 M(-1) cm(-1)) on nearest-neighbor base pairs. TO signals hybridization, as shown by increases in the steady-state fluorescence emission. Studies of TO fluorescence lifetimes in FIT-PNA and in DNADNA and PNADNA complexes highlighted four different fluorescence-decay processes that may be closed or opened in response to matched or single-mismatched hybridization. A very fast decay process (0.04-0.07 ns) and a slow decay process (2.33-3.95 ns) provide reliable monitors of hybridization, and the opening of a fast decay channel (0.22-0.48 ns) that resulted in an attenuation of the fluorescence emission is observed upon the formation of mismatched base pairs.


Assuntos
Benzotiazóis/química , DNA/análise , DNA/química , Quinolinas/química , Pareamento de Bases , Sequência de Bases , Dicroísmo Circular , Espectrometria de Fluorescência , Fatores de Tempo , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa