Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 40(39): 7489-7509, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32859713

RESUMO

Dopamine (DA) neurons of the VTA track cues and rewards to generate a reward prediction error signal during Pavlovian conditioning. Here we explored how these neurons respond to a self-paced, operant task in freely moving mice. The animal could trigger a reward-predicting cue by remaining in a specific location of an operant box for a brief time before moving to a spout for reward collection. VTA DA neurons were identified using DAT-Cre male mice that carried an optrode with minimal impact on the behavioral task. In vivo single-unit recordings revealed transient fast spiking responses to the cue and reward in correct trials, while for incorrect ones the activity paused, reflecting positive and negative error signals of a reward prediction. In parallel, a majority of VTA DA neurons simultaneously encoded multiple actions (e.g., movement velocity, acceleration, distance to goal, and licking) in sustained slow firing modulation. Applying a GLM, we show that such multiplexed encoding of rewarding and motor variables by individual DA neurons was only apparent while the mouse was engaged in the task. Downstream targets may exploit such goal-directed multiplexing of VTA DA neurons to adjust actions to optimize the task's outcome.SIGNIFICANCE STATEMENT VTA DA neurons code for multiple functions, including the reward prediction error but also motivation and locomotion. Here we show that about half of the recorded VTA DA neurons perform multiplexing: they exploit the phasic and tonic activity modes to encode, respectively, the cue/reward responses and motor parameters, most prominently when the mouse engages in a self-paced operand task. VTA non-DA neurons, by contrast, encode motor parameters regardless of task engagement.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Movimento , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo
2.
J Neurosci ; 31(29): 10689-700, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775612

RESUMO

In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.


Assuntos
Vias Aferentes/fisiologia , Mapeamento Encefálico , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Eletroencefalografia/métodos , Imageamento Tridimensional , Estimulação Física/métodos , Ratos , Córtex Somatossensorial/crescimento & desenvolvimento , Vibrissas/inervação
3.
Neuron ; 88(3): 553-64, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26593092

RESUMO

Feeding satisfies metabolic need but is also controlled by external stimuli, like palatability or predator threat. Nucleus accumbens shell (NAcSh) projections to the lateral hypothalamus (LH) are implicated in mediating such feeding control, but the neurons involved and their mechanism of action remain elusive. We show that dopamine D1R-expressing NAcSh neurons (D1R-MSNs) provide the dominant source of accumbal inhibition to LH and provide rapid control over feeding via LH GABA neurons. In freely feeding mice, D1R-MSN activity reduced during consumption, while their optogenetic inhibition prolonged feeding, even in the face of distracting stimuli. Conversely, activation of D1R-MSN terminals in LH was sufficient to abruptly stop ongoing consumption, even during hunger. Direct inhibition of LH GABA neurons, which received input from D1R-MSNs, fully recapitulated these findings. Together, our study resolves a feeding circuit that overrides immediate metabolic need to allow rapid consumption control in response to changing external stimuli. VIDEO ABSTRACT.


Assuntos
Comportamento Alimentar/fisiologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Técnicas de Cultura de Órgãos
4.
Cell Rep ; 9(5): 1654-1660, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25482555

RESUMO

Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.


Assuntos
Córtex Cerebral/fisiologia , Vibrissas/fisiologia , Animais , Córtex Cerebral/citologia , Neurônios Colinérgicos/fisiologia , Camundongos , Percepção do Tato
5.
Nat Neurosci ; 16(11): 1671-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24097038

RESUMO

Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (<50 ms) reliable sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Somatossensorial/citologia , Vibrissas/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Anestésicos Locais/farmacologia , Animais , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Nervo Facial/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Estimulação Física , Detecção de Sinal Psicológico/efeitos dos fármacos , Detecção de Sinal Psicológico/fisiologia , Tetrodotoxina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Valina/análogos & derivados , Valina/farmacologia
6.
Neuron ; 80(6): 1477-90, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24360548

RESUMO

Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (S1) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by S1 projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.


Assuntos
Córtex Motor/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais Sinápticos/fisiologia , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Animais , Masculino , Camundongos , Vias Neurais/fisiologia , Estimulação Física
7.
Nat Neurosci ; 15(4): 607-12, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366760

RESUMO

Neocortical GABAergic neurons have diverse molecular, structural and electrophysiological features, but the functional correlates of this diversity are largely unknown. We found unique membrane potential dynamics of somatostatin-expressing (SOM) neurons in layer 2/3 of the primary somatosensory barrel cortex of awake behaving mice. SOM neurons were spontaneously active during periods of quiet wakefulness. However, SOM neurons hyperpolarized and reduced action potential firing in response to both passive and active whisker sensing, in contrast with all other recorded types of nearby neurons, which were excited by sensory input. Optogenetic inhibition of SOM neurons increased burst firing in nearby excitatory neurons. We hypothesize that the spontaneous activity of SOM neurons during quiet wakefulness provides a tonic inhibition to the distal dendrites of excitatory pyramidal neurons. Conversely, the inhibition of SOM cells during active cortical processing likely enhances distal dendritic excitability, which may be important for top-down computations and sensorimotor integration.


Assuntos
Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Somatostatina/biossíntese , Vibrissas/metabolismo , Potenciais de Ação/fisiologia , Animais , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Neuron ; 69(6): 1160-75, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21435560

RESUMO

Sensory information is actively gathered by animals, but the synaptic mechanisms driving neuronal circuit function during active sensory processing are poorly understood. Here, we investigated the synaptically driven membrane potential dynamics during active whisker sensation using whole-cell recordings from layer 2/3 pyramidal neurons in the primary somatosensory barrel cortex of behaving mice. Although whisker contact with an object evoked rapid depolarization in all neurons, these touch responses only drove action potentials in ∼10% of the cells. Such sparse coding was ensured by cell-specific reversal potentials of the touch-evoked response that were hyperpolarized relative to action potential threshold for most neurons. Intercontact interval profoundly influenced touch-evoked postsynaptic potentials, interestingly without affecting the peak membrane potential of the touch response. Dual whole-cell recordings indicated highly correlated membrane potential dynamics during active touch. Sparse action potential firing within synchronized cortical layer 2/3 microcircuits therefore appears to robustly signal each active touch response.


Assuntos
Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Potenciais da Membrana/fisiologia , Camundongos , Inibição Neural/fisiologia , Técnicas de Patch-Clamp , Estatísticas não Paramétricas , Vibrissas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa