Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 517(7535): 472-5, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25612050

RESUMO

Palaeomagnetic measurements of meteorites suggest that, shortly after the birth of the Solar System, the molten metallic cores of many small planetary bodies convected vigorously and were capable of generating magnetic fields. Convection on these bodies is currently thought to have been thermally driven, implying that magnetic activity would have been short-lived. Here we report a time-series palaeomagnetic record derived from nanomagnetic imaging of the Imilac and Esquel pallasite meteorites, a group of meteorites consisting of centimetre-sized metallic and silicate phases. We find a history of long-lived magnetic activity on the pallasite parent body, capturing the decay and eventual shutdown of the magnetic field as core solidification completed. We demonstrate that magnetic activity driven by progressive solidification of an inner core is consistent with our measured magnetic field characteristics and cooling rates. Solidification-driven convection was probably common among small body cores, and, in contrast to thermally driven convection, will have led to a relatively late (hundreds of millions of years after accretion), long-lasting, intense and widespread epoch of magnetic activity among these bodies in the early Solar System.

2.
Nano Lett ; 20(1): 306-313, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809058

RESUMO

The compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers. In this work, we achieve efficient spin-wave propagation over micrometer distances in thin films of the insulating antiferromagnet hematite with large magnetic domains while evidencing much shorter attenuation lengths in multidomain thin films. Through transport and magnetic imaging, we determine the role of the magnetic domain structure and spin-wave scattering at domain walls to govern the transport. We manipulate the spin transport by tailoring the domain configuration through field cycle training. For the appropriate crystalline orientation, zero-field spin transport is achieved across micrometers, as required for device integration.

3.
Phys Rev Lett ; 123(7): 077201, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491129

RESUMO

The main origin of the chiral symmetry breaking and, thus, for the magnetochiral effects in magnetic materials is associated with an antisymmetric exchange interaction, the intrinsic Dzyaloshinskii-Moriya interaction (DMI). Recently, numerous inspiring theoretical works predict that the bending of a thin film to a curved surface is often sufficient to induce similar chiral effects. However, these originate from the exchange or magnetostatic interactions and can stabilize noncollinear magnetic structures or influence spin-wave propagation. Here, we demonstrate that curvature-induced chiral effects are experimentally observable rather than theoretical abstraction and are present even in conventional soft ferromagnetic materials. We show that, by measuring the depinning field of domain walls in the simplest possible curve, a flat parabolic stripe, the effective exchange-driven DMI interaction constant can be quantified. Remarkably, its value can be as high as the interfacial DMI constant for thin films and can be tuned by the parabola's curvature.

4.
Nano Lett ; 18(2): 1057-1063, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29363315

RESUMO

The combination of topological insulators, that is, bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.

5.
Nano Lett ; 17(9): 5187-5192, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28759250

RESUMO

ReS2 is considered as a promising candidate for novel electronic and sensor applications. The low crystal symmetry of this van der Waals compound leads to a highly anisotropic optical, vibrational, and transport behavior. However, the details of the electronic band structure of this fascinating material are still largely unexplored. We present a momentum-resolved study of the electronic structure of monolayer, bilayer, and bulk ReS2 using k-space photoemission microscopy in combination with first-principles calculations. We demonstrate that the valence electrons in bulk ReS2 are-contrary to assumptions in recent literature-significantly delocalized across the van der Waals gap. Furthermore, we directly observe the evolution of the valence band dispersion as a function of the number of layers, revealing the transition from an indirect band gap in bulk ReS2 to a direct gap in the bilayer and the monolayer. We also find a significantly increased effective hole mass in single-layer crystals. Our results establish bilayer ReS2 as an advantageous building block for two-dimensional devices and van der Waals heterostructures.

6.
Proc Natl Acad Sci U S A ; 111(17): 6198-202, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733906

RESUMO

Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of ∼ 100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.

7.
Nano Lett ; 14(7): 3981-6, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24849571

RESUMO

Increasing performance and enabling novel functionalities of microelectronic devices, such as three-dimensional (3D) on-chip architectures in optics, electronics, and magnetics, calls for new approaches in both fabrication and characterization. Up to now, 3D magnetic architectures had mainly been studied by integral means without providing insight into local magnetic microstructures that determine the device performance. We prove a concept that allows for imaging magnetic domain patterns in buried 3D objects, for example, magnetic tubular architectures with multiple windings. The approach is based on utilizing the shadow contrast in transmission X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy and correlating the observed 2D projection of the 3D magnetic domains with simulated XMCD patterns. That way, we are not only able to assess magnetic states but also monitor the field-driven evolution of the magnetic domain patterns in individual windings of buried magnetic rolled-up nanomembranes.

8.
Nano Lett ; 14(2): 435-41, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24377706

RESUMO

Ferromagnetism in certain alloys consisting of magnetic and nonmagnetic species can be activated by the presence of chemical disorder. This phenomenon is linked to an increase in the number of nearest-neighbor magnetic atoms and local variations in the electronic band structure due to the existence of disorder sites. An approach to induce disorder is through exposure of the chemically ordered alloy to energetic ions; collision cascades formed by the ions knock atoms from their ordered sites and the concomitant vacancies are filled randomly via thermal diffusion of atoms at room temperature. The ordered structure thereby undergoes a transition into a metastable solid solution. Here we demonstrate the patterning of highly resolved magnetic structures by taking advantage of the large increase in the saturation magnetization of Fe60Al40 alloy triggered by subtle atomic displacements. The sigmoidal characteristic and sensitive dependence of the induced magnetization on the atomic displacements manifests a sub-50 nm patterning resolution. Patterning of magnetic regions in the form of stripes separated by ∼ 40 nm wide spacers was performed, wherein the magnet/spacer/magnet structure exhibits reprogrammable parallel (↑/spacer/↑) and antiparallel (↑/spacer/↓) magnetization configurations in zero field. Materials in which the magnetic behavior can be tuned via ion-induced phase transitions may allow the fabrication of novel spin-transport and memory devices using existing lateral patterning tools.

9.
Nat Commun ; 15(1): 2193, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467623

RESUMO

Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.

10.
ACS Appl Mater Interfaces ; 16(15): 19681-19690, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564236

RESUMO

Swirling spin textures, including topologically nontrivial states, such as skyrmions, chiral domain walls, and magnetic vortices, have garnered significant attention within the scientific community due to their appeal from both fundamental and applied points of view. However, their creation, controlled manipulation, and stability are typically constrained to certain systems with specific crystallographic symmetries, bulk or interface interactions, and/or a precise stacking sequence of materials. Recently, a new approach has shown potential for the imprint of magnetic radial vortices in soft ferromagnetic compounds making use of the stray field of YBa2Cu3O7-δ superconducting microstructures in ferromagnet/superconductor (FM/SC) hybrids at temperatures below the superconducting transition temperature (TC). Here, we explore the lower size limit for the imprint of magnetic radial vortices in square and disc shaped structures as well as the persistence of these spin textures above TC, with magnetic domains retaining partial memory. Structures with circular geometry and with FM patterned to smaller radius than the superconductor island facilitate the imprinting of magnetic radial vortices and improve their stability above TC, in contrast to square structures where the presence of magnetic domains increases the dipolar energy. Micromagnetic modeling coupled with a SC field model reveals that the stabilization mechanism above TC is mediated by microstructural defects. Superconducting control of swirling spin textures, and their stabilization above the superconducting transition temperature by means of defect engineering holds promising prospects for shaping superconducting spintronics based on magnetic textures.

11.
Phys Rev Lett ; 110(17): 177209, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679771

RESUMO

We have studied the magnetic interaction of circular magnetic islands with a dipole character on a square lattice. The square pattern consists of lithographically prepared polycrystalline PdFe islands, 150 nm in diameter and a periodicity of 300 nm. Below the Curie temperature at 260 K, the islands are in a single domain state with isotropic in-plane magnetization. Below 160 K, there is an onset of interisland interaction that leads to a change of the shape of the hysteresis, an increase of coercivity, and a development of in-plane anisotropy. Photoemission electron microscopy with circularly polarized incident x rays tuned to the L3 edge of Fe confirms the increasing correlation of the magnetic islands and the formation of elongated chains, as predicted by Vedmedenko et al. [Phys. Rev. Lett. 95, 207202 (2005)] for contributions from pole interactions of higher order than the dipolar one. Neighboring chains are found to be irregularly oriented either parallel or antiparallel.

12.
Nano Lett ; 12(8): 3961-6, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22738285

RESUMO

Modifying the curvature in magnetic nanostructures is a novel and elegant way toward tailoring physical phenomena at the nanoscale, allowing one to overcome limitations apparent in planar counterparts. Here, we address curvature-driven changes of static magnetic properties in cylindrically curved magnetic segments with different radii of curvature. The curved architectures are prepared by capping nonmagnetic micrometer- and nanometer-sized rolled-up membranes with a soft-magnetic 20 nm thick permalloy (Ni(80)Fe(20)) film. A quantitative comparison between the magnetization reversal processes in caps with different diameters is given. The phase diagrams of magnetic equilibrium domain patterns (diameter versus length) are generated. For this, joint experimental, including X-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM), and theoretical studies are carried out. The anisotropic magnetostatic interaction in cylindrically curved architectures originating from the thickness gradient reduces substantially the magnetostatic interaction between closely packed curved nanowires. This feature is beneficial for racetrack memory devices, since a much higher areal density might be achieved than possible with planar counterparts.

13.
Commun Phys ; 6(1): 193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665397

RESUMO

Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic properties via non-stochastic switching. However, the decisive roles of short-range exchange and long-range dipolar interactions have not yet been clarified for optimized reconfigurable functionality. We report broadband spin-wave spectroscopy and X-ray photoemission electron microscopy on different quasicrystal lattices consisting of ferromagnetic Ni81Fe19 nanobars arranged on aperiodic Penrose and Ammann tilings with different exchange and dipolar interactions. We imaged the magnetic states of partially reversed quasicrystals and analyzed their configurations in terms of the charge model, geometrical frustration and the formation of flux-closure loops. Only the exchange-coupled lattices are found to show aperiodicity-specific collective phenomena and non-stochastic switching. Both, exchange and dipolarly coupled quasicrystals show magnonic excitations with narrow linewidths in minor loop measurements. Thereby reconfigurable functionalities in spintronics and magnonics become realistic.

14.
Nano Lett ; 11(4): 1710-5, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21391653

RESUMO

Correlating the electronic structure and magnetic response with the morphology and crystal structure of the same single ferromagnetic nanoparticle has been up to now an unresolved challenge. Here, we present measurements of the element-specific electronic structure and magnetic response as a function of magnetic field amplitude and orientation for chemically synthesized single Fe nanocubes with 18 nm edge length. Magnetic states and interactions of monomers, dimers, and trimers are analyzed by X-ray photoemission electron microscopy for different particle arrangements. The element-specific electronic structure can be probed and correlated with the changes of magnetic properties. This approach opens new possibilities for a deeper understanding of the collective response of magnetic nanohybrids in multifunctional materials and in nanomagnetic colloidal suspensions used in biomedical and engineering technologies.


Assuntos
Ferro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Impedância Elétrica , Magnetismo , Teste de Materiais , Tamanho da Partícula
15.
ACS Nano ; 16(7): 10545-10553, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35802911

RESUMO

Magnetic domain formation in two-dimensional (2D) materials gives perspectives into the fundamental origins of 2D magnetism and also motivates the development of advanced spintronics devices. However, the characterization of magnetic domains in atomically thin van der Waals (vdW) flakes remains challenging. Here, we employ X-ray photoemission electron microscopy (XPEEM) to perform layer-resolved imaging of the domain structures in the itinerant vdW ferromagnet Fe5GeTe2 which shows near room temperature bulk ferromagnetism and a weak perpendicular magnetic anisotropy (PMA). In the bulk limit, we observe the well-known labyrinth-type domains. Thinner flakes, on the other hand, are characterized by increasingly fragmented domains. While PMA is a characteristic property of Fe5GeTe2, we observe a spin-reorientation transition with the spins canting in-plane for flakes thinner than six layers. Notably, a bubble phase emerges in four-layer flakes. This thickness dependence, which clearly deviates from the single-domain behavior observed in other 2D magnetic materials, demonstrates the exciting prospect of stabilizing complex spin textures in 2D vdW magnets at relatively high temperatures.

16.
Beilstein J Nanotechnol ; 13: 74-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116214

RESUMO

We present a microscopic magnetic domain imaging study of single-shot all-optical magnetic toggle switching of a ferrimagnetic Gd26Fe74 film with out-of-plane easy axis of magnetization by X-ray magnetic circular dichroism photoelectron emission microscopy. Individual linearly polarized laser pulses of 800 nm wavelength and 100 fs duration above a certain threshold fluence reverse the sample magnetization, independent of the magnetization direction, the so-called toggle switching. Local deviations from this deterministic behavior close to magnetic domain walls are studied in detail. Reasons for nondeterministic toggle switching are related to extrinsic effects, caused by pulse-to-pulse variations of the exciting laser system, and to intrinsic effects related to the magnetic domain structure of the sample. The latter are, on the one hand, caused by magnetic domain wall elasticity, which leads to a reduction of the domain-wall length at features with sharp tips. These features appear after the optical switching at positions where the line of constant threshold fluence in the Gaussian footprint of the laser pulse comes close to an already existing domain wall. On the other hand, we identify the presence of laser-induced domain-wall motion in the toggle-switching event as a further cause for local deviations from purely deterministic toggle switching.

17.
Nat Commun ; 13(1): 4807, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974009

RESUMO

Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions. Here, we report on the observation of isolated skyrmions in compensated synthetic antiferromagnets at zero field and room temperature using X-ray magnetic microscopy. Micromagnetic simulations and an analytical model confirm the chiral antiferromagnetic nature of these skyrmions and allow the identification of the physical mechanisms controlling their size and stability. Finally, we demonstrate the nucleation of synthetic antiferromagnetic skyrmions via local current injection and ultra-fast laser excitation.

18.
Nano Lett ; 10(10): 3828-35, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20836512

RESUMO

On the basis of a scanning probe microscopy strategy, we propose a combined methodology capable to program nonvolatile multilevel data and read them out in a noninvasive manner. In the absence of the common two-electrode cell geometry, this nanoscale approach permits, in addition, investigating the relevance of inherent film properties. We demonstrate the feasibility of modifying the local electronic response of La(0.7)Sr(0.3)MnO(3) to obtain nanostructures with switchable resistance embedded in low cost oxide thin films, which constitutes a promising approach for fabricating high density nonvolatile memories.

19.
Nanoscale ; 13(9): 4985-4994, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33634814

RESUMO

We investigate the local nanoscale changes of the magnetic anisotropy of a Ni film subject to an inverse magnetostrictive effect by proximity to a V2O3 layer. Using temperature-dependent photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism (XMCD), direct images of the Ni spin alignment across the first-order structural phase transition (SPT) of V2O3 were obtained. We find an abrupt temperature-driven reorientation of the Ni magnetic domains across the SPT, which is associated with a large increase of the coercive field. Moreover, angular dependent ferromagnetic resonance (FMR) shows a remarkable change in the magnetic anisotropy of the Ni film across the SPT of V2O3. Micromagnetic simulations based on these results are in quantitative agreement with the PEEM data. Direct measurements of the lateral correlation length of the Ni domains from XMCD images show an increase of almost one order of magnitude at the SPT compared to room temperature, as well as a broad spatial distribution of the local transition temperatures, thus corroborating the phase coexistence of Ni anisotropies caused by the V2O3 SPT. We show that the rearrangement of the Ni domains is due to strain induced by the oxide layers' structural domains across the SPT. Our results illustrate the use of alternative hybrid systems to manipulate magnetic domains at the nanoscale, which allows for engineering of coercive fields for novel data storage architectures.

20.
ACS Appl Mater Interfaces ; 12(24): 27812-27818, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32442364

RESUMO

Nanoscale, low-phase-noise, tunable transmitter-receiver links are key for enabling the progress of wireless communication. We demonstrate that vortex-based spin-torque nano-oscillators, which are intrinsically low-noise devices because of their topologically protected magnetic structure, can achieve frequency tunability when submitted to local ion implantation. In the experiments presented here, the gyrotropic mode is excited with spin-polarized alternating currents and anisotropic magnetoresistance measurements yield discrete frequencies from a single device. Indeed, chromium-implanted regions of permalloy disks exhibit different saturation magnetization than neighboring, non-irradiated areas, and thus different resonance frequency, corresponding to the specific area where the core is gyrating. Our study proves that such devices can be fabricated without the need for further lithographical steps, suggesting ion irradiation can be a viable and cost-effective fabrication method for densely packed networks of oscillators.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa