Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biodegradation ; 34(4): 357-369, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840890

RESUMO

Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such as Ralstonia, Cupriavidus, Azoarcus, and Rhodococcus became more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations.


Assuntos
Metais Pesados , Poluentes do Solo , Benzeno/metabolismo , Tolueno/metabolismo , Cádmio/metabolismo , RNA Ribossômico 16S/genética , Chumbo/metabolismo , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes do Solo/metabolismo
2.
Environ Sci Technol ; 56(13): 9387-9397, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35704431

RESUMO

Insensitive munitions compounds (IMCs) are emerging nitroaromatic contaminants developed by the military as safer-to-handle alternatives to conventional explosives. Biotransformation of nitroaromatics via microbial respiration has only been reported for a limited number of substrates. Important soil microorganisms can respire natural organic matter (NOM) by reducing its quinone moieties to hydroquinones. Thus, we investigated the NOM respiration combined with the abiotic reduction of nitroaromatics by the hydroquinones formed. First, we established nitroaromatic concentration ranges that were nontoxic to the quinone respiration. Then, an enrichment culture dominated by Geobacter anodireducens could indirectly reduce a broad array of nitroaromatics by first respiring NOM components or the NOM surrogate anthraquinone-2,6-disulfonate (AQDS). Without quinones, no nitroaromatic tested was reduced except for the IMC 3-nitro-1,2,4-triazol-5-one (NTO). Thus, the quinone respiration expanded the spectrum of nitroaromatics susceptible to transformation. The system functioned with very low quinone concentrations because NOM was recycled by the nitroaromatic reduction. A metatranscriptomic analysis demonstrated that the microorganisms obtained energy from quinone or NTO reduction since respiratory genes were upregulated when AQDS or NTO was the electron acceptor. The results indicated microbial NOM respiration sustained by the nitroaromatic-dependent cycling of quinones. This process can be applied as a nitroaromatic remediation strategy, provided that a quinone pool is available for microorganisms.


Assuntos
Hidroquinonas , Microbiologia do Solo , Benzoquinonas , Oxirredução , Quinonas , Respiração
3.
Environ Sci Technol ; 55(9): 5806-5814, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33835790

RESUMO

The nitroheterocyclic 3-nitro-1,2,4-triazol-5-one (NTO) is an ingredient of insensitive explosives increasingly used by the military, becoming an emergent environmental pollutant. Cometabolic biotransformation of NTO occurs in mixed microbial cultures in soils and sludges with excess electron-donating substrates. Herein, we present the unusual energy-yielding metabolic process of NTO respiration, in which the NTO reduction to 3-amino-1,2,4-triazol-5-one (ATO) is linked to the anoxic acetate oxidation to CO2 by a culture enriched from municipal anaerobic digester sludge. Cell growth was observed simultaneously with NTO reduction, whereas the culture was unable to grow in the presence of acetate only. Extremely low concentrations (0.06 mg L-1) of the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited NTO reduction, indicating that the process was linked to respiration. The ultimate evidence of NTO respiration was adenosine triphosphate production due to simultaneous exposure to NTO and acetate. Metagenome sequencing revealed that the main microorganisms (and relative abundances) were Geobacter anodireducens (89.3%) and Thauera sp. (5.5%). This study is the first description of a nitroheterocyclic compound being reduced by anaerobic respiration, shedding light on creative microbial processes that enable bacteria to make a living reducing NTO.


Assuntos
Bactérias , Nitrocompostos , Bactérias/genética , Geobacter , Respiração , Triazóis
4.
Environ Sci Technol ; 53(21): 12648-12656, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553579

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is one of the main ingredients of many insensitive munitions, which are being used as replacements for conventional explosives. As its use becomes widespread, more research is needed to assess its environmental fate. Previous studies have shown that NTO is biologically reduced to 3-amino-1,2,4-triazol-5-one (ATO). However, the final degradation products of ATO are still unknown. We have studied the aerobic degradation of ATO by enrichment cultures derived from the soil. After multiple transfers, ATO degradation was monitored in closed bottles through measurements of inorganic carbon and nitrogen species. The results indicate that the members of the enrichment culture utilize ATO as the sole source of carbon and nitrogen. As ATO was mineralized to CO2, N2, and NH4+, microbial growth was observed in the culture. Co-substrates addition did not increase the ATO degradation rate. Quantitative polymerase chain reaction analysis revealed that the organisms that enriched using ATO as carbon and nitrogen source were Terrimonas spp., Ramlibacter-related spp., Mesorhizobium spp., Hydrogenophaga spp., Ralstonia spp., Pseudomonas spp., Ectothiorhodospiraceae, and Sphingopyxis. This is the first study to report the complete mineralization of ATO by soil microorganisms, expanding our understanding of natural attenuation and bioremediation of the explosive NTO.


Assuntos
Substâncias Explosivas , Nitrocompostos , Biodegradação Ambiental , Núcleo Familiar , Estresse Oxidativo , Triazóis
5.
Environ Sci Technol ; 50(19): 10518-10526, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27597320

RESUMO

Nitrite (NO2-) substrate under certain conditions can cause failure of N-removal processes relying on anaerobic ammonium oxidizing (anammox) bacteria. Detoxification of NO2- can potentially be achieved by using exogenous nitrate (NO3-). In this work, continuous experiments in bioreactors with anammox bacteria closely related to "Candidatus Brocadia caroliniensis" were conducted to evaluate the effectiveness of short NO3- additions to reverse NO2- toxicity. The results show that a timely NO3- addition immediately after a NO2- stress event completely reversed the NO2- inhibition. This reversal occurs without NO3- being metabolized as evidence by lack of any 30N2 formation from 15N-NO3-. The maximum recovery rate was observed with 5 mM NO3- added for 3 days; however, slower but significant recovery was also observed with 5 mM NO3- for 1 day or 2 mM NO3- for 3 days. Without NO3- addition, long-term NO2- inhibition of anammox biomass resulted in irreversible damage of the cells. These results suggest that a short duration dose of NO3- to an anammox bioreactor can rapidly restore the activity of NO2--stressed anammox cells. On the basis of the results, a hypothesis about the detoxification mechanism related to narK genes in anammox bacteria is proposed and discussed.


Assuntos
Bactérias Anaeróbias/metabolismo , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Compostos de Amônio Quaternário/metabolismo
6.
Environ Sci Technol ; 49(9): 5681-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25839647

RESUMO

Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.


Assuntos
Bactérias/metabolismo , Substâncias Explosivas/metabolismo , Microbiota , Nitrocompostos/metabolismo , Microbiologia do Solo , Triazóis/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental , Biotransformação , Nitrogênio/metabolismo
7.
Appl Environ Microbiol ; 80(3): 1210-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296507

RESUMO

Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine.


Assuntos
Cloro/metabolismo , Bactérias Gram-Positivas/metabolismo , Hidrocarbonetos Clorados/metabolismo , Xantonas/metabolismo , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
8.
Appl Microbiol Biotechnol ; 98(14): 6233-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24846732

RESUMO

A large number of chlorinated contaminants are found in wastewater, originating from domestic and industrial sources and from runoff captured by sewers. The presence of some of these contaminants, such as the pharmaceutical diclofenac, has recently been documented, whereas the presence of other contaminants, such as polychlorinated biphenyls, has been known for many years. This mini-review discusses the current state of knowledge regarding the degradation and outflow of chlorinated contaminants from municipal wastewater treatment plants (WWTPs) and the known physiologies of bacteria capable of degrading these contaminants, and summarizes current knowledge gaps as a way to focus future research efforts.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Clorados/metabolismo , Águas Residuárias/química , Poluentes da Água/metabolismo , Purificação da Água/métodos , Biotransformação
9.
Water Res ; 229: 119496, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535085

RESUMO

Nitroguanidine (NQ) is a constituent of gas generators for automobile airbags, smokeless pyrotechnics, insecticides, propellants, and new insensitive munitions formulations applied by the military. During its manufacture and use, NQ can easily spread in soils, ground, and surface waters due to its high aqueous solubility. Very little is known about the microbial biotransformation of NQ. This study aimed to elucidate important mechanisms operating during NQ anaerobic biotransformation. To achieve this goal, we developed an anaerobic enrichment culture able to reduce NQ to nitrosoguanidine (NsoQ), which was further abiotically transformed to cyanamide. Effective electron donors for NQ biotransformation were lactate and, to a lesser extent, pyruvate. The results demonstrate that the enrichment process selected a sulfate-reducing culture that utilized lactate as its electron donor and sulfate as its electron acceptor while competing with NQ as an electron sink. A unique property of the culture was its requirement for exogenous nitrogen (e.g., from yeast extract or NH4Cl) for NQ biotransformation since NQ itself did not serve as a nitrogen source. The main phylogenetic groups associated with the NQ-reducing culture were sulfate-reducing and fermentative bacteria, namely Cupidesulfovibrio oxamicus (63.1% relative abundance), Dendrosporobacter spp. (12.0%), and Raoultibacter massiliens (10.9%). The molecular ecology results corresponded to measurable physiological properties of the most abundant members. The results establish the conditions for NQ anaerobic biotransformation and the microbial community associated with the process, improving our present comprehension of NQ environmental fate and assisting the development of NQ remediation strategies.


Assuntos
Nitrogênio , Triazóis , Anaerobiose , Filogenia , Biotransformação
10.
Chemosphere ; 335: 139121, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271465

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is an ingredient of new safer-to-handle military insensitive munitions formulations. NTO can be microbially reduced to 3-amino-1,2,4-triazol-5-one (ATO) under anaerobic conditions if an electron donor is available. Conversely, ATO can undergo aerobic biodegradation. Previously, our research group developed an anaerobic enrichment culture that reduces NTO to ATO. A second culture could aerobically mineralize ATO. This study aimed to combine anaerobic/aerobic conditions within a down-flow perlite/soil column for simultaneous NTO reduction and ATO oxidation. Acetate biostimulation was investigated to promote oxygen depletion and create anaerobic micro-niches for NTO reduction, whereas perlite increased soil porosity and oxygen convection, allowing ATO oxidation. Two columns packed with a perlite/soil mixture (70:30, wet wt.%) or 100% perlite were operated aerobically and inoculated with the NTO- and ATO-degrading cultures. Initially, the influent consisted of ∼280 µM ATO, and after 30 days, the feeding was switched to ∼260 µM NTO and ∼250 µM acetate. By progressively increasing acetate from 250 to 4000 µM, the NTO removal gradually improved in both columns. The perlite/soil column reached a 100% NTO removal after 4000 µM acetate was supplemented. Additionally, there was no ATO accumulation, and inorganic nitrogen was produced, indicating ATO mineralization. Although NH4+ was produced following ATO oxidation, most nitrogen was recovered as NO3- likely via nitrification reactions. Microbial community analysis revealed that phylotypes hosted in the enrichment cultures specialized in NTO reduction (e.g., Geobacter) and ATO oxidation (e.g., Hydrogenophaga, Ramlibacter, Terrimonas, and Pseudomonas) were established in the columns. Besides, the predominant genera (Azohydromonas, Zoogloea, and Azospirillum) are linked to nitrogen cycling by performing nitrogen fixation, NO3- reduction, and nitroaromatics degradation. This study applied a bulking agent (perlite) and acetate biostimulation to achieve simultaneous NTO reduction and ATO oxidation in a single column. Such a strategy can assist with real-world applications of NTO and ATO biodegradation mechanisms.


Assuntos
Nitrocompostos , Solo , Biodegradação Ambiental , Nitrocompostos/metabolismo , Nitrogênio/metabolismo
11.
Appl Environ Microbiol ; 78(2): 393-401, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22101035

RESUMO

The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle.


Assuntos
Chloroflexi/isolamento & purificação , Chloroflexi/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Microbiologia do Solo , Carga Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
13.
Sci Rep ; 11(1): 6943, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767228

RESUMO

We report the isolation a halophilic bacterium that degrades both aromatic and aliphatic hydrocarbons as the sole sources of carbon at high salinity from produced water. Phylogenetic analysis of 16S rRNA-gene sequences shows the isolate is a close relative of Modicisalibacter tunisiensis isolated from an oil-field water in Tunisia. We designate our isolate as Modicisalibacter sp. strain Wilcox. Genome analysis of strain Wilcox revealed the presence of a repertoire of genes involved in the metabolism of aliphatic and aromatic hydrocarbons. Laboratory culture studies corroborated the predicted hydrocarbon degradation potential. The strain degraded benzene, toluene, ethylbenzene, and xylenes at salinities ranging from 0.016 to 4.0 M NaCl, with optimal degradation at 1 M NaCl. Also, the strain degraded phenol, benzoate, biphenyl and phenylacetate as the sole sources of carbon at 2.5 M NaCl. Among aliphatic compounds, the strain degraded n-decane and n-hexadecane as the sole sources of carbon at 2.5 M NaCl. Genome analysis also predicted the presence of many heavy metal resistance genes including genes for metal efflux pumps, transport proteins, and enzymatic detoxification. Overall, due to its ability to degrade many hydrocarbons and withstand high salt and heavy metals, strain Wilcox may prove useful for remediation of produced waters.


Assuntos
Halomonadaceae/isolamento & purificação , Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás/microbiologia , Biodegradação Ambiental , Genoma Bacteriano , Halomonadaceae/genética , Halomonadaceae/metabolismo , Resíduos Industriais , Poluição por Petróleo
14.
J Hazard Mater ; 417: 126151, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229401

RESUMO

Azoles are an emerging class of contaminants with a growing ubiquitous presence in the environment. This study investigates the aerobic microbial degradation of four azoles, pyrazole (PA), 1,2,4-triazole (TA), benzotriazole (BTA) and 5-methylbenzotriazole (5-MBTA), with return activated sludge and microbial enrichment cultures. Slow degradation of PA was observed in the presence of glucose and NH4+ with a peak degradation rate of 0.5 mg d-1 gVSS-1. TA was found to be highly persistent, with no significant degradation observed in 6-8 months under any incubation condition. In contrast, the benzotriazoles were readily degraded at faster rates in all incubation conditions. The degradation rates observed for BTA and 5-MBTA, when provided as the sole substrates, were 8.1 and 16.5 mg d-1 gVSS-1, respectively. Two enrichment cultures, one degrading BTA and the other degrading 5-MBTA, were developed from the activated sludge. Mass balance studies revealed complete mineralization of 5-MBTA and partial breakdown of BTA by the enrichment cultures. Nocardioides sp. and Pandoraea pnomenusa were the most abundant bacteria in the BTA and 5-MBTA degrading enrichment cultures, respectively. The research shows large differences in the biodegradability of various azoles, ranging from complete mineralization of 5-MBTA to complete persistence for TA.


Assuntos
Burkholderiaceae , Esgotos , Azóis , Biodegradação Ambiental
15.
Chemosphere ; 264(Pt 2): 128550, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33065321

RESUMO

Azoles are contaminants of emerging concern. They have a ubiquitous presence in the environment due to their wide variety of uses. This study investigated the fate of two commonly occurring azole compounds in an anammox enrichment culture. The results showed that 1H-pyrazole (PA) and 1H-1,2,4-triazole (TA) were biotransformed yielding major biotransformation products, 3-amino-1H-pyrazole and 3-amino-1H-1,2,4-triazole, respectively. Nitrate and glucose greatly stimulated the biotransformation. Under optimized conditions, 80.7% of PA and 16.4% of TA were biotransformed in an incubation period of 6 days. High molar product yield of 84.5% and 83.6% was observed per mole of PA and TA biotransformed, respectively. This novel and selective biotransformation constitutes the first report on the microbial biotransformation of PA and is amongst the very few reports on the biotransformation of TA. This study also provides evidence that anammox enrichments have unexpected capabilities to biotransform organic contaminants of emerging concern.


Assuntos
Azóis , Triazóis , Biotransformação , Nitratos
16.
Microbiol Insights ; 8(Suppl 2): 9-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26508873

RESUMO

Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile.

17.
FEMS Microbiol Lett ; 344(1): 48-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23561013

RESUMO

Triclosan is an antimicrobial agent that is discharged to soils with land-applied wastewater biosolids, is persistent under anaerobic conditions, and yet its impact on anaerobic microbial communities in soils is largely unknown. We hypothesized that triclosan enriches for Dehalococcoides-like Chloroflexi because these bacteria respire organochlorides and are likely less sensitive, relative to other bacteria, to the antimicrobial effects of triclosan. Triplicate anaerobic soil microcosms were seeded with agricultural soil, which was not previously exposed to triclosan, and were amended with 1 mg kg(-1) of triclosan. Triplicate control microcosms did not receive triclosan, and the experiment was run for 618 days. The overall bacterial community (assessed by automated ribosomal intergenic spacer analysis and denaturing gradient gel electrophoresis) was not impacted by triclosan; however, the abundance of Dehalococcoides-like Chloroflexi 16S rRNA genes (determined by qPCR) increased 20-fold with triclosan amendment compared with a fivefold increase without triclosan. This work demonstrates that triclosan impacts anaerobic soil communities at environmentally relevant levels.


Assuntos
Chloroflexi/metabolismo , Microbiologia do Solo , Solo/análise , Triclosan/análise , Chloroflexi/efeitos dos fármacos , Chloroflexi/genética , RNA Bacteriano , RNA Ribossômico 16S , Poluentes do Solo/análise , Triclosan/farmacologia
18.
FEMS Microbiol Ecol ; 84(2): 248-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23240654

RESUMO

Across the U.S. Upper Midwest, a natural geographical sulfate gradient exists in lakes. Sediment grab samples and cores were taken to explore whether this sulfur gradient impacted organohalide-respiring Chloroflexi in lake sediments. Putative organohalide-respiring Chloroflexi were detected in 67 of 68 samples by quantitative polymerase chain reaction. Their quantities ranged from 3.5 × 10(4) to 8.4 × 10(10) copies 16S rRNA genes g(-1) dry sediment and increased in number from west to east, whereas lake sulfate concentrations decreased along this west-to-east transect. A terminal restriction fragment length polymorphism (TRFLP) method was used to corroborate this inverse relationship, with sediment samples from lower sulfate lakes containing both a higher number of terminal restriction fragments (TRFs) belonging to the organohalide-respiring Dehalococcoidetes, and a greater percentage of the TRFLP amplification made up by Dehalococcoidetes members. Statistical analyses showed that dissolved sulfur in the porewater, measured as sulfate after oxidation, appeared to have a negative impact on the total number of putative organohalide-respiring Chloroflexi, the number of Dehalococcoidetes TRFs, and the percentage of the TRFLP amplification made up by Dehalococcoidetes. These findings point to dissolved sulfur, presumably present as reduced sulfur species, as a potentially controlling factor in the natural cycling of chlorine, and perhaps as a result, the natural cycling of some carbon as well.


Assuntos
Chloroflexi/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Sulfatos/análise , Biodiversidade , Cloretos/análise , Chloroflexi/classificação , Chloroflexi/genética , Desulfitobacterium/isolamento & purificação , Hidrocarbonetos Halogenados/metabolismo , Lagos/química , Peptococcaceae/isolamento & purificação , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa