Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 26(1): 101009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864479

RESUMO

PURPOSE: Current and emerging treatments for Duchenne muscular dystrophy (DMD) position DMD as a candidate condition for newborn screening (NBS). In anticipation of the nomination of DMD for universal NBS, we conducted a prospective study under the Early Check voluntary NBS research program in North Carolina, United States. METHODS: We performed screening for creatine kinase-MM (CK-MM), a biomarker of muscle damage, on residual routine newborn dried blood spots (DBS) from participating newborns. Total creatine kinase testing and next generation sequencing of an 86-neuromuscular gene panel that included DMD were offered to parents of newborns who screened positive. Bivariate and multivariable analyses were performed to assess effects of biological and demographic predictors on CK-MM levels in DBS. RESULTS: We screened 13,354 newborns and identified 2 males with DMD. The provisional 1626 ng/mL cutoff was raised to 2032 ng/mL to improve specificity, and additional cutoffs (900 and 360 ng/mL) were implemented to improve sensitivity for older and low-birthweight newborns. CONCLUSION: Population-scale screening for elevated CK-MM in DBS is a feasible approach to identify newborns with DMD. Inclusion of birthweight- and age-specific cutoffs, repeat creatine kinase testing after 72 hours of age, and DMD sequencing improve sensitivity and specificity of screening.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Recém-Nascido , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/epidemiologia , Distrofia Muscular de Duchenne/genética , Triagem Neonatal , Peso ao Nascer , North Carolina/epidemiologia , Estudos Prospectivos , Creatina Quinase
2.
Proc Natl Acad Sci U S A ; 115(12): 3168-3173, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507195

RESUMO

Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound-color (auditory-visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes-COL4A1, ITGA2, MYO10, ROBO3, SLC9A6, and SLIT2-associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences.


Assuntos
Percepção Auditiva/genética , Axônios/fisiologia , Percepção de Cores/genética , Transtornos da Percepção/genética , Percepção Auditiva/fisiologia , Colágeno Tipo IV/genética , Percepção de Cores/fisiologia , Feminino , Expressão Gênica , Variação Genética , Humanos , Integrina alfa2/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Linhagem , Transtornos da Percepção/etiologia , Proteínas RGS/genética , Receptores de Superfície Celular , Receptores Imunológicos/genética , Trocadores de Sódio-Hidrogênio/genética , Sinestesia
3.
J Neurosci ; 39(44): 8778-8787, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570534

RESUMO

A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10-100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.


Assuntos
Mapeamento Encefálico , Cognição/fisiologia , Fatores de Transcrição Forkhead/genética , Imageamento por Ressonância Magnética , Adolescente , Adulto , Feminino , Fatores de Transcrição Forkhead/fisiologia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Leitura , Reprodutibilidade dos Testes , Percepção da Fala/genética , Adulto Jovem
4.
Genome Res ; 22(5): 860-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22300769

RESUMO

A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences.


Assuntos
Alelos , Regulação da Expressão Gênica , Variação Genética , Fatores de Transcrição/metabolismo , Doenças Autoimunes/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteína p300 Associada a E1A/metabolismo , Éxons , Genoma Humano , Humanos , Íntrons , Polimorfismo de Nucleotídeo Único , Ligação Proteica , RNA Polimerase II/metabolismo , Elementos Reguladores de Transcrição , Análise de Sequência de RNA
5.
PLoS Genet ; 7(8): e1002228, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21852959

RESUMO

The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS) to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92%) occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance) of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.


Assuntos
Metilação de DNA , Epigênese Genética , Alelos , Sequência de Bases , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Cromossomos Humanos X/genética , Ilhas de CpG , Feminino , Expressão Gênica , Inativação Gênica , Hereditariedade , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
6.
Int J Neonatal Screen ; 10(2)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920848

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder and the most common type of muscular dystrophy in children. As newborn screening (NBS) for DMD undergoes evaluation for the Recommended Uniform Screening Panel and is already mandated in multiple states, refining NBS algorithms is of utmost importance. NBS for DMD involves measuring creatine kinase-MM (CK-MM) concentration-a biomarker of muscle damage-in dried blood spots. The current test is FDA-approved for samples obtained less than 72 h after birth. Separate reference ranges are needed for samples collected later than 72 h after birth. In this study, we investigated the relationship between age and CK-MM in presumed healthy newborns to inform NBS algorithm designs. In patients with DMD, CK-MM is persistently elevated in childhood and adolescence, while it may be transiently elevated for other reasons in healthy newborns. CK-MM decrease over time was demonstrated by a population sample of 20,306 presumed healthy newborns tested between 0 and 60 days of life and repeat testing of 53 newborns on two separate days. In the population sample, CK-MM concentration was highest in the second 12 h period of life (median = 318 ng/mL) when only 57.6% of newborns tested below 360 ng/mL, the lowest previously published cutoff. By 72 h of age, median CK-MM concentration was 97 ng/mL, and 96.0% of infants had concentrations below 360 ng/mL. Between 72 h and 60 days, median CK-MM concentration ranged from 32 to 37 ng/mL. Establishing age-related cutoffs is crucial for optimizing the sensitivity and specificity of NBS for DMD.

7.
Hum Mol Genet ; 20(20): 3964-73, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21791549

RESUMO

While the distribution of RNA polymerase II (PolII) in a variety of complex genomes is correlated with gene expression, the presence of PolII at a gene does not necessarily indicate active expression. Various patterns of PolII binding have been described genome wide; however, whether or not PolII binds at transcriptionally inactive sites remains uncertain. The two X chromosomes in female cells in mammals present an opportunity to examine each of the two alleles of a given locus in both active and inactive states, depending on which X chromosome is silenced by X chromosome inactivation. Here, we investigated PolII occupancy and expression of the associated genes across the active (Xa) and inactive (Xi) X chromosomes in human female cells to elucidate the relationship of gene expression and PolII binding. We find that, while PolII in the pseudoautosomal region occupies both chromosomes at similar levels, it is significantly biased toward the Xa throughout the rest of the chromosome. The general paucity of PolII on the Xi notwithstanding, detectable (albeit significantly reduced) binding can be observed, especially on the evolutionarily younger short arm of the X. PolII levels at genes that escape inactivation correlate with the levels of their expression; however, additional PolII sites can be found at apparently silenced regions, suggesting the possibility of a subset of genes on the Xi that are poised for expression. Consistent with this hypothesis, we show that a high proportion of genes associated with PolII-accessible sites, while silenced in GM12878, are expressed in other female cell lines.


Assuntos
Alelos , Cromossomos Humanos X , RNA Polimerase II/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Cromatina/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Inativação do Cromossomo X/genética
8.
Microbiol Spectr ; : e0404122, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939327

RESUMO

Congenital cytomegalovirus (cCMV) is the most common perinatal infection, the leading cause of nongenetic sensorineural hearing loss, and one of the leading causes of neurodevelopmental impairment in the developed world. Early identification via newborn screening (NBS) would benefit the many undiagnosed infants who are either asymptomatic or mildly to moderately symptomatic, of whom 20% develop sequelae. The sensitivity of a recently developed PCR-based method to detect CMV in dried blood spots (DBS) is less than 80% and requires significantly more specimen than any other NBS test. We sought to improve the analytical sensitivity of the screening method by using droplet digital PCR and direct PCR and decreasing the amount of specimen utilized. The methods were tested with CMV-spiked filters, DBS from CMV-spiked cord blood, and DBS from neonates with cCMV. The results showed that the analytical sensitivity of all modified methods was equivalent to that of the reference method, with consistent CMV detection at high viral loads and inconsistent detection at low viral loads. IMPORTANCE Implementation of screening for cCMV in public health programs is hindered by feasibility challenges, including limited specimen availability and an insufficiently sensitive DBS-based screening assay. We report on efforts to improve the currently available DBS-based molecular assay to increase its feasibility of implementation in newborn screening programs. Although the analytical sensitivity of the modified methods was similar at the lower IU, equivalent CMV detection was achieved using one punch instead of the required three punches for the reference method. This reduction in sample size has the potential to substantially improve feasibility of NBS for cCMV. A population-based study is needed to further evaluate the clinical sensitivity of the improved assay.

9.
Int J Neonatal Screen ; 9(1)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975851

RESUMO

Pilot studies to detect newborns with Duchenne Muscular Dystrophy (DMD) by newborn bloodspot screening (NBS) have been conducted under the New York State Newborn Screening Program (NYS) and are currently in progress as part of the Early Check Program at Research Triangle Institute (RTI) International. The Newborn Screening Quality Assurance Program (NSQAP) at the U.S. Centers for Disease Control and Prevention (CDC) produced a set of seven prototype dried blood spot (DBS) reference materials spiked with varying levels of creatine kinase MM isoform (CK-MM). These DBS were evaluated over a 3-week period by CDC, NYS, and RTI, all using the same CK-MM isoform-specific fluoroimmunoassay. Results from each laboratory were highly correlated with the relative proportion of CK-MM added to each of the six spiked pools. Based on reference ranges established by NYS and RTI for their pilot studies, these contrived DBS collectively spanned the CK-MM ranges found in typical newborns and the elevated ranges associated with DMD. This set allows quality assessment over the wide range of fluctuating CK-MM levels in typical and DMD-affected newborns.

10.
Int J Neonatal Screen ; 8(1)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225934

RESUMO

Duchenne Muscular Dystrophy (DMD) is a fatal X-linked disorder with a birth prevalence of 19.8:100,000 males worldwide. Elevated concentration of the muscle enzyme creatine kinase-MM (CK-MM) allows for presymptomatic screening of newborns using Dried Blood Spots (DBS). We evaluated imprecision and carryover of the FDA-approved PerkinElmer GSP Neonatal CK-MM kit over multiple runs, days, and operators, followed by quantification of CK-MM loss in stored newborn, contrived, and non-newborn patient DBS resulting from exposure to ambient versus low humidity (50-day trial), and high humidity and high temperature (8-day trial). Imprecision %CV was ≤14% for all verification comparisons and over 6 months of testing. On average, the mean CK-MM recovery after 50 days was >80% of initial concentration for all sample types stored in low humidity and <80% in ambient humidity. After 8 days of storage in high humidity and high temperature, the mean recovery for newborn samples was <80%. Verification results for the GSP Neonatal CK-MM assay were concordant with kit parameters and the assay performed consistently over 6 months. CK-MM degradation in ambient storage can be mitigated by reducing exposure to humidity. Assessment of DBS shipping and storage conditions is recommended prior to implementing DMD screening.

11.
Int J Neonatal Screen ; 7(1)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801060

RESUMO

Prior to statewide newborn screening (NBS) for spinal muscular atrophy (SMA) in North Carolina, U.S.A., we offered voluntary screening through the Early Check (EC) research study. Here, we describe the EC experience from October 2018 through December 2020. We enrolled a total of 12,065 newborns and identified one newborn with 0 copies of SMN1 and two copies of SMN2, consistent with severe early onset of SMA. We also detected one false positive result, likely stemming from an unrelated blood disorder associated with a low white blood cell count. We evaluated the timing of NBS for babies enrolled prenatally (n = 932) and postnatally (n = 11,133) and reasons for delays in screening and reporting. Although prenatal enrollment led to faster return of results (median = 13 days after birth), results for babies enrolled postnatally were still available within a timeframe (median = 21 days after birth) that allowed the opportunity to receive essential treatment early in life. We evaluated an SMA q-PCR screening method at two separate time points, confirming the robustness of the assay. The pilot project provided important information about SMA screening in anticipation of forthcoming statewide expansion as part of regular NBS.

12.
Philos Trans R Soc Lond B Biol Sci ; 374(1787): 20190026, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31630655

RESUMO

Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme-colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging. This article is part of a discussion meeting issue 'Bridging senses: novel insights from synaesthesia'.


Assuntos
Sinestesia/genética , Sinestesia/psicologia , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Estudos de Coortes , Percepção de Cores , Feminino , Humanos , Imaginação , Masculino , Memória , Herança Multifatorial , Testes Neuropsicológicos
13.
Mol Cell Biol ; 25(22): 9910-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16260606

RESUMO

In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , DNA/química , Dano ao DNA , Reparo do DNA , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Células HeLa , Humanos , Hidroxiureia/farmacologia , Imunoprecipitação , Microscopia de Fluorescência , Mitose , Oligonucleotídeos/química , Fosforilação , Plasmídeos/metabolismo , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína de Replicação A/metabolismo , Fase S , Transdução de Sinais , Raios Ultravioleta
15.
Science ; 328(5975): 235-9, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20299549

RESUMO

The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans.


Assuntos
Alelos , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Variação Genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , População Negra , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/química , Imunoprecipitação da Cromatina , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Desoxirribonuclease I/metabolismo , Feminino , Humanos , Masculino , Núcleo Familiar , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Elementos Reguladores de Transcrição , Análise de Sequência de DNA , População Branca , Inativação do Cromossomo X
16.
Genome Res ; 16(3): 340-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16415109

RESUMO

Muscular hypertrophy in callipyge sheep results from a single nucleotide substitution located in the genomic interval between the imprinted Delta, Drosophila, Homolog-like 1 (DLK1) and Maternally Expressed Gene 3 (MEG3). The mechanism linking the mutation to muscle hypertrophy is unclear but involves DLK1 overexpression. The mutation is contained within CLPG1 transcripts produced from this region. Herein we show that CLPG1 is expressed prenatally in the hypertrophy-responsive longissimus dorsi muscle by all four possible genotypes, but postnatal expression is restricted to sheep carrying the mutation. Surprisingly, the mutation results in nonimprinted monoallelic transcription of CLPG1 from only the mutated allele in adult sheep, whereas it is expressed biallelically during prenatal development. We further demonstrate that local CpG methylation is altered by the presence of the mutation in longissimus dorsi of postnatal sheep. For 10 CpG sites flanking the mutation, methylation is similar prenatally across genotypes, but doubles postnatally in normal sheep. This normal postnatal increase in methylation is significantly repressed in sheep carrying one copy of the mutation, and repressed even further in sheep with two mutant alleles. The attenuation in methylation status in the callipyge sheep correlates with the onset of the phenotype, continued CLPG1 transcription, and high-level expression of DLK1. In contrast, normal sheep exhibit hypermethylation of this locus after birth and CLPG1 silencing, which coincides with DLK1 transcriptional repression. These data are consistent with the notion that the callipyge mutation inhibits perinatal nucleation of regional chromatin condensation resulting in continued elevated transcription of prenatal DLK1 levels in adult callipyge sheep. We propose a model incorporating these results that can also account for the enigmatic normal phenotype of homozygous mutant sheep.


Assuntos
Cromatina/metabolismo , Expressão Gênica , Hipertrofia/genética , Músculo Esquelético/metabolismo , Mutação , Ovinos/genética , Animais , Sequência de Bases , Ilhas de CpG , Citosina/metabolismo , Feto/metabolismo , Heterozigoto , Hipertrofia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa