Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790009

RESUMO

The classical theory of modulation instability (MI) attributed to Bespalov-Talanov in optics and Benjamin-Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.

2.
Opt Express ; 31(22): 37011-37018, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017838

RESUMO

We experimentally and numerically investigate the dynamics of a fiber ring cavity in which two different instability can be excited: gain-through-filtering and parametric instability. We demonstrate that they can be triggered individually or collectively depending on the two main control parameters offered by the cavity, namely the pump power and the cavity detuning. The experimental observations are in good agreement with numerical simulations.

3.
Opt Lett ; 48(13): 3587-3590, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390187

RESUMO

We report the observation of the parametric gain band distortion in the nonlinear (depleted) regime of modulation instability in dispersion oscillating fibers. We show that the maximum gain is shifted even outside the boundaries of the linear parametric gain band. Experimental observations are confirmed by numerical simulations.

4.
Opt Lett ; 48(2): 387-390, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638464

RESUMO

We demonstrate a new, to the best of our knowledge, method of generating mid-infrared pulses by difference frequency mixing the Stokes pulse generated by four-wave mixing in a photonic crystal fiber with the remaining pump pulse. The Stokes pulses generated by four-wave mixing are inherently overlapped temporally and spatially with the pump pulse at the output of the fiber. Focusing this output into a nonlinear crystal phase matched for difference frequency generation between the pump and Stokes pulses results in a simple method of generating mid-infrared pulses. With a pump source at 1.064 µm, and a photonic crystal fiber engineered to generate Stokes pulses at approximately 1.65 µm, we generate 160 mW of mid-infrared light at approximately 3 µm through difference frequency generation.

5.
Opt Lett ; 46(19): 5019-5022, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598259

RESUMO

We report an experimental study on the backward-pumped Raman amplification of short pulses into a 20.3 km long optical fiber. We demonstrate that the gain and the pump saturation depend on the pulse duration. We also reveal that for short enough pulses, the amplification process remains linear, and very high peak powers, even larger than the Raman pump, are achievable. Numerical simulations reproduce the experimental results with excellent agreement.

6.
Opt Express ; 28(12): 17773-17781, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679980

RESUMO

We report the experimental observation of more than four Fermi-Pasta-Ulam-Tsingou recurrences in an optical fiber thanks to an ultra-low loss optical fiber and to an active loss compensation system. We observe both regular (in-phase) and symmetry-broken (phase-shifted) recurrences, triggered by the input phase. Experimental results are confirmed by numerical simulations.

7.
Opt Lett ; 45(13): 3757-3760, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630947

RESUMO

We report the first, to the best of our knowledge, experimental observation of doubly periodic first-order solutions of the nonlinear Schrödinger equation in optical fibers. We confirm, experimentally, the existence of A-type and B-type solutions. This is done by using the initial conditions that consist of a strong pump and two weak sidebands. The evolution of power and phase of the main spectral components is recorded using heterodyne time-domain reflectometry. Another important part of our experiment is active loss compensation. We reach a good agreement between theory and experiment.

8.
Opt Lett ; 44(4): 763-766, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767981

RESUMO

Full-field longitudinal characterization of picosecond pulse train formation in optical fibers is reported. The spatio-temporal evolution is obtained via fast and non-invasive distributed measurements in phase and intensity of the main spectral components of the pulses. To illustrate the performance of the setup, we report, to the best of our knowledge, the first time-domain experimental observation of the symmetry breaking of Fermi-Pasta-Ulam recurrences. The experimental results are in good agreement with numerical simulations.

9.
Opt Lett ; 44(22): 5426-5429, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730074

RESUMO

We experimentally investigate two cycles of Fermi-Pasta-Ulam-Tsingou recurrence in optical fibers. Using three waves input, we characterize the distance of maximum compression points against the sideband amplitude and relative phase, outlining the qualitative changes of the dynamics due to separatrix crossing. Experimental results are in good agreement with numerical simulations and analytical predictions.

10.
Opt Express ; 25(10): 11283-11296, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788810

RESUMO

We present a theoretical and experimental study of the modulation instability process in a dispersion oscillating passive fiber-ring resonator in the low dispersion region. Generally, the modulation of the dispersion along the cavity length is responsible for the emergence of a regime characterised by multiple parametric resonances (or Faraday instabilities). We show that, under weak dispersion conditions, a huge number of Faraday sidebands can grow under the influence of fourth order dispersion. We specifically designed a piecewise uniform fiber-ring cavity and report on experiments that confirm our theoretical predictions. We recorded the dynamics of this system revealing strong interactions between the different sidebands in agreement with numerical simulations.

11.
Opt Lett ; 42(9): 1824-1827, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454170

RESUMO

Hollow core fibers are considered as promising candidates to deliver intense temporally overlapping picosecond pulses in applications such as stimulated Raman scattering (SRS) microscopy and endoscopy because of their inherent low nonlinearity compared to solid-core silica fibers. Here we demonstrate that, contrary to prior assumptions, parasitic signals are generated in Kagomé lattice hollow core fibers. We identify the origin of the parasitic signals as an interplay between the Kerr nonlinearity of air and frequency-dependent fiber losses. Importantly, we identify the special cases of experimental parameters that are free from parasitic signals, making hollow core fibers ideal candidates for noise-free SRS microscopy and endoscopy.


Assuntos
Endoscopia , Tecnologia de Fibra Óptica , Microscopia , Fibras Ópticas , Dióxido de Silício
12.
Opt Lett ; 42(19): 4004-4007, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957183

RESUMO

We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

13.
Phys Rev Lett ; 118(25): 254101, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696752

RESUMO

We investigate the temporal photonic analogue of the dam-break phenomenon for shallow water by exploiting a fiber optics setup. We clearly observe the decay of the steplike input (photonic dam) into a pair of oppositely propagating rarefaction wave and dispersive shock wave. Our results show evidence for a critical transition of the dispersive shock into a self-cavitating state. The detailed observation of the cavitating state dynamics allows for a fully quantitative test of the Whitham modulation theory applied to the universal defocusing nonlinear Schrödinger equation.

14.
Opt Lett ; 41(21): 5027-5030, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805677

RESUMO

We investigate modulational instability in inhomogeneous passive cavities modeled by the Ikeda map. The cavity boundary conditions and the modulation of the fiber dispersion force the system to develop parametric instabilities, which lead to the generation of simple, as well as period-doubled, temporal patterns. The analytical results obtained by means of the Floquet theory are validated through numerical solution of the Ikeda map, and the limitations of the mean-field Lugiato-Lefever model are highlighted.

15.
Opt Lett ; 41(1): 115-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696172

RESUMO

We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

16.
Opt Lett ; 41(14): 3269-72, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420512

RESUMO

We report, to the best of our knowledge, the first experimental observation of surface Brillouin scattering in silica-based photonic crystal fibers, arising from the interaction between guided light and surface acoustic waves. This was achieved using small-core and high air-filling fraction microstructured fibers that enable a strong opto-acoustic coupling near the air holes while mitigating the acoustic leakages in the microstructured cladding. It is further shown that this new type of light scattering is highly sensitive to the fiber air-hole microstructure, thus providing a passive and efficient way to control it. Our observations are confirmed through numerical simulations of the elastodynamics equation.

17.
Phys Rev Lett ; 116(14): 143901, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104711

RESUMO

We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

18.
Opt Express ; 23(4): 3869-75, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836426

RESUMO

We investigate theoretically and experimentally the modulation instability process in a dispersion oscillating fiber characterized by an amplitude modulation of its group velocity dispersion. We developed an analytical model that allows us to calculate the parametric gain in these fibers and to predict the position of the quasi-phase matched modulation instability sidelobes. The two fundamental frequencies characterizing the dispersion profile lead to the splitting of the original multiple sidelobes generated in basic sinusoidally varying dispersion oscillating fibers. These theoretical predictions are confirmed by experiments.

19.
Opt Express ; 23(8): 10103-10, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969052

RESUMO

We report a fiber-optic parametric amplifier with ultra-broad and flat gain band by using a longitudinally tailored optical fiber. The parametric amplifier has been designed from realistic numerical simulations combined with an inverse algorithm to obtain a flat and wide gain band through fiber dispersion management. We experimentally report ~12 THz gain bandwidth on the Stokes side of the pump with a gain ripple as low as 7 dB and a mean gain up to ~60 dB. Experimental results show good agreement with numerical predictions for different pump powers and wavelength detuning.

20.
Opt Lett ; 40(18): 4281-4, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371916

RESUMO

We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa