Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37994784

RESUMO

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Assuntos
Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Sequência de Bases , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos
2.
Proc Natl Acad Sci U S A ; 120(52): e2313514120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109538

RESUMO

To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.


Assuntos
Oryzias , Animais , Oryzias/genética , Estações do Ano , Ritmo Circadiano/fisiologia , Gônadas , Fotoperíodo
3.
Ann Bot ; 130(7): 1029-1040, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36534688

RESUMO

BACKGROUND AND AIMS: Plant propagules often possess specialized morphologies that facilitate dispersal across specific landscapes. In the fruit dimorphism of a coastal shrub, Scaevola taccada, individual plants produce either cork-morph or pulp-morph fruits. The former is buoyant and common on sandy beaches, whereas the latter does not float, is bird-dispersed, and is common on elevated sites such as slopes on sea cliffs and behind rocky shores. We hypothesized that beach populations bridge the heterogeneous landscapes by serving as a source of both fruit types, while dispersal is biased for the pulp morph on elevated sites within the islands and for the cork morph between beaches of different islands. Based on this hypothesis, we predicted that populations in elevated sites would diverge genetically over time due to isolation by distance, whereas beach populations would maintain high genetic similarity via current gene flow. METHODS: The genetic structure and gene flow in S. taccada were evaluated by investigating genome-wide single nucleotide polymorphisms in plants from 17 sampling sites on six islands (belonging to the Ryukyu, Daito and Ogasawara Islands) in Japan. KEY RESULTS: Geographical isolation was detected among the three distant island groups. Analyses within the Ryukyu Islands suggested that sandy beach populations were characterized by genetic admixture, whereas populations in elevated sites were relatively isolated between the islands. Pairwise FST values between islands were lowest between sandy beaches, intermediate between sandy beaches and elevated sites, and highest between elevated sites. CONCLUSIONS: Dispersal across the ocean by cork morphs is sufficiently frequent to prevent genetic divergence between beaches of different islands. Stronger genetic isolation of elevated sites between islands suggests that bird dispersal by pulp morphs is restricted mainly within islands. These contrasting patterns of gene flow realized by fruit dimorphism provide evidence that fruit characteristics can strongly mediate genetic structure.


Assuntos
Frutas , Magnoliopsida , Fluxo Gênico , Caracteres Sexuais , Japão , Estruturas Genéticas
4.
New Phytol ; 229(6): 3587-3601, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33222195

RESUMO

Polyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons. We analyzed expression patterns of genes and homeologs (homeologous gene copies in allopolyploids) using RNA sequencing. We detected niche divergence between the allopolyploid and its diploid progenitors along water availability gradient at a fine scale: the diploids in opposite extremes and the allopolyploid in a broader range between diploids, with limited overlap with diploids at both ends. Most of the genes whose homeolog expression ratio changed among habitats in C. flexuosa varied spatially and temporally. These findings provide empirical evidence for niche divergence between an allopolyploid and its diploid progenitor species at a fine scale and suggest that divergent expression patterns of homeologs in an allopolyploid may underlie its persistence in diverse habitats.


Assuntos
Cardamine , Diploide , Ecossistema , Poliploidia
5.
Heredity (Edinb) ; 126(5): 831-845, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33510467

RESUMO

Understanding adaptation mechanisms is important in evolutionary biology. Parallel adaptation provides good opportunities to investigate adaptive evolution. To confirm parallel adaptation, it is effective to examine whether the phenotypic similarity has one or multiple origins and to use demographic modeling to consider the gene flow between ecotypes. Solidago yokusaiana is a rheophyte endemic to the Japanese Archipelago that diverged from Solidago virgaurea. This study examined the parallel origins of S. yokusaiana by distinguishing between multiple and single origins and subsequent gene flow. The haplotypes of noncoding chloroplast DNA and genotypes at 14 nuclear simple sequence repeat (nSSR) loci and single-nucleotide polymorphisms (SNPs) revealed by double-digest restriction-associated DNA sequencing (ddRADseq) were used for phylogeographic analysis; the SNPs were also used to model population demographics. Some chloroplast haplotypes were common to S. yokusaiana and its ancestor S. virgaurea. Also, the population genetic structures revealed by nSSR and SNPs did not correspond to the taxonomic species. The demographic modeling supported the multiple origins of S. yokusaiana in at least four districts and rejected a single origin with ongoing gene flow between the two species, implying that S. yokusaiana independently and repeatedly adapted to frequently flooding riversides.


Assuntos
Solidago , DNA de Cloroplastos/genética , Repetições de Microssatélites , Filogeografia , Solidago/genética
6.
Oecologia ; 195(3): 677-687, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33611626

RESUMO

An altitudinal gradient of leaf water repellency is often observed between and within species. In a previous study of Arabidopsis halleri, cauline leaves (stem leaves that wrap flowering buds) showed higher water repellency in exposed semi-alpine plants than in understory low-elevation plants. Here, we examined altitudinal variations in the cuticular wax content of the leaf surface and experimentally evaluated the role of high water repellency of cauline leaves. Leaf cuticular wax was analysed using comprehensive two-dimensional gas chromatography (GC)-mass spectrometry and a GC-flame ionisation detector. Young flowering buds wrapped by cauline leaves were exposed to freezing temperatures with or without water, and frost damage to the flowering buds was compared between plants from semi-alpine and low-elevation habitats. Higher amounts of C29, C31, and C33 alkanes were observed in the cauline leaves of semi-alpine plants than in those of low-elevation plants. In the freezing experiment, water application increased damage to the flowering buds of low-elevation plants, and the extent of damage to the flowering buds was lower in semi-alpine plants than in low-elevation plants when water was applied to the plant surface. Genetic variations in the amounts of alkanes on the leaf surface depending on the altitude occurred specifically in cauline leaves. Our results indicate that the water repellency of cauline leaves presumably minimises frost damage to flowering buds at high altitudes.


Assuntos
Arabidopsis , Altitude , Congelamento , Folhas de Planta , Água
7.
Ann Bot ; 126(1): 163-177, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32249287

RESUMO

BACKGROUND AND AIMS: Contrasting life-history traits can evolve through generations of dwarf plant ecotypes, yet such phenotypic changes often involve decreased plant size and reproductive allocation, which can configure seed dispersal patterns and, subsequently, population demography. Therefore, evolutionary transitions to dwarfism can represent good study systems to test the roles of life-history traits in population demography by comparing genetic structure between related but phenotypically divergent ecotypes. METHODS: In this study, we examined an ecotypic taxon pair of the world's smallest goldenrod (stem height 2.6 cm) in alpine habitats and its closely related lowland taxon (30-40 cm) found on Yakushima Island, Japan. Genetic variation in chloroplast DNA sequences, nuclear microsatellites and genome-wide single-nucleotide polymorphisms were used to investigate 197 samples from 16 populations, to infer the population genetic demography and compare local genetic structure of the ecotypes. KEY RESULTS: We found a pronounced level of genetic differentiation among alpine dwarf populations, which were much less geographically isolated than their lowland counterparts. In particular, several neighbouring dwarf populations (located ~500 m apart) harboured completely different sets of chloroplast haplotypes and nuclear genetic clusters. Demographic modelling revealed that the dwarf populations have not exchanged genes at significant levels after population divergence. CONCLUSIONS: These lines of evidence suggest that substantial effects of genetic drift have operated on these dwarf populations. The low-growing stature and reduced fecundity (only 3.1 heads per plant) of the dwarf plants may have reduced gene flow and rare long-distance seed dispersal among habitat patches, although the effects of life-history traits require further evaluation using ecological approaches.


Assuntos
Fluxo Gênico , Variação Genética , Solidago , Genética Populacional , Humanos , Ilhas , Japão , Solidago/crescimento & desenvolvimento
8.
Ann Bot ; 126(2): 245-260, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32285123

RESUMO

BACKGROUND AND AIMS: The genus Asarum sect. Heterotropa (Aristolochiaceae) probably experienced rapid diversification into 62 species centred on the Japanese Archipelago and Taiwan, providing an ideal model for studying island adaptive radiation. However, resolving the phylogeny of this plant group using Sanger sequencing-based approaches has been challenging. To uncover the radiation history of Heterotropa, we employed a phylogenomic approach using double-digested RAD-seq (ddRAD-seq) to yield a sufficient number of phylogenetic signals and compared its utility with that of the Sanger sequencing-based approach. METHODS: We first compared the performance of phylogenetic analysis based on the plastid matK and trnL-F regions and nuclear ribosomal internal transcribed spacer (nrITS), and phylogenomic analysis based on ddRAD-seq using a reduced set of the plant materials (83 plant accessions consisting of 50 species, one subspecies and six varieties). We also conducted more thorough phylogenomic analyses including the reconstruction of biogeographic history using comprehensive samples of 135 plant accessions consisting of 54 species, one subspecies, nine varieties of Heterotropa and six outgroup species. KEY RESULTS: Phylogenomic analyses of Heterotropa based on ddRAD-seq were superior to Sanger sequencing-based approaches and resulted in a fully resolved phylogenetic tree with strong support for 72.0-84.8 % (depending on the tree reconstruction methods) of the branches. We clarified the history of Heterotropa radiation and found that A. forbesii, the only deciduous Heterotropa species native to mainland China, is sister to the evergreen species (core Heterotropa) mostly distributed across the Japanese Archipelago and Taiwan. CONCLUSIONS: The core Heterotropa group was divided into nine subclades, each of which had a narrow geographic distribution. Moreover, most estimated dispersal events (22 out of 24) were between adjacent areas, indicating that the range expansion has been geographically restricted throughout the radiation history. The findings enhance our understanding of the remarkable diversification of plant lineages in the Japanese Archipelago and Taiwan.


Assuntos
Aristolochiaceae , Asarum/genética , China , Filogenia , Análise de Sequência de DNA , Taiwan
9.
Arch Virol ; 165(9): 2091-2094, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533330

RESUMO

Two contigs with high similarity to partitivirus sequences were identified by de novo assembly of sequences obtained by RNA-Seq from a wild brassicaceous plant, Arabidopsis halleri subsp. gemmifera. Here, we report the complete genome sequence of a putative novel partitivirus. Excluding the poly-A tail, it consists of two RNA genome segments of 1912 and 1769 bp, which are predicted to encode a 585-amino-acid-long putative RNA-dependent RNA polymerase (RdRp) and a 487-amino-acid-long putative capsid protein (CP), respectively. Phylogenetically, this virus belongs to the genus Alphapartitivirus and is most closely related to Raphanus sativus partitivirus 1 from radish. We propose the name "Arabidopsis halleri partitivirus 1" (AhPV1) for this novel virus.


Assuntos
Arabidopsis/virologia , Genoma Viral , Doenças das Plantas/virologia , Vírus de RNA/genética , Sequência de Bases , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma
10.
Dev Growth Differ ; 61(1): 5-11, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30467835

RESUMO

Seasonal developmental plasticity, which consists of season-dependent alternations of developmental processes, has evolved to produce optimal phenotypes depending on specific periods in a year. For example, many phenological events in plants, such as flowering, fruiting, bud blast, bud formation, and growth cessation, are often controlled seasonally. Although temperature and photoperiod are the two major seasonal cues for such responses, the importance of phase lag between annual oscillations of the two signals has been unexplored, despite its universal nature in the context of seasonal environments. In this article, the phase-lag calendar hypothesis (New Phytologist, 210, 2016, 399), especially the one between temperature and photoperiod, is explained using meteorological data obtained from central Japan as an example. We set forth to show how, for a narrow window in time of a couple of weeks in a year, simple threshold responses to these two signals that differ in annual oscillation phases are enough to make developmental plasticity to be expressed as phenological events. The properties of the underlying mechanisms of the events in different seasons are further predicted, and the responses are compared with reported empirical examples. Because many organisms have evolved under the phase lag between photoperiod and temperature, the developmental plasticity in response to the phase lag should be evaluated for diverse organisms.


Assuntos
Flores/crescimento & desenvolvimento , Fotoperíodo , Plantas/metabolismo , Estações do Ano , Temperatura , Japão , Fenótipo
11.
Theor Appl Genet ; 132(1): 65-80, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30267113

RESUMO

KEY MESSAGE: A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.


Assuntos
3-Oxoacil-(Proteína Carreadora de Acil) Redutase/genética , Capsaicina/análise , Capsicum/enzimologia , Capsicum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Elementos de DNA Transponíveis , Ácidos Graxos/análise , Ácidos Graxos/química , Frutas/química , Frutas/genética , Inativação Gênica , Genes de Plantas , Ligação Genética , Íntrons , Mutação , Fenótipo , Filogenia , Melhoramento Vegetal
12.
Ann Bot ; 124(2): 209-220, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30868165

RESUMO

BACKGROUND AND AIMS: Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS: Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS: All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS: Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.


Assuntos
Brassicaceae , Cardamine , Europa (Continente) , Ásia Oriental , Genoma de Planta , Humanos , Espécies Introduzidas , Poliploidia
13.
Microb Ecol ; 78(1): 113-121, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30357428

RESUMO

Studies on plant viruses are biased towards crop diseases and little is known about viruses in natural vegetation. We conducted extensive surveys of plant viruses in wild Brassicaceae plants occurring in three local plant communities in central Japan. We applied RNA-Seq with selective depletion of rRNA, which allowed us to detect infections of all genome-reported viruses simultaneously. Infections of Turnip mosaic virus (TuMV), Cucumber mosaic virus (CMV), Brassica yellows virus, Pelargonium zonate spot virus, and Arabidopsis halleri partitivirus 1 were detected from the two perennial species, Arabidopsis halleri subsp. gemmifera and Rorippa indica. De novo assembly further detected partial sequences of a putative novel virus in Arabis fragellosa. Virus species composition and infection rate differed depending on site and plant species. Viruses were most frequently detected from the perennial clonal plant, A. halleri, in which a high clonal transmission rate of viruses across multiple years was confirmed. Phylogenetic analysis of TuMV and CMV showed that virus strains from wild Brassicaceae were included as a major clade of these viruses with other reported strains from crop plants, suggesting that viruses were shared among wild plants and crops. Our studies indicated that distribution of viruses in natural plant populations are determined by the combinations of life histories of viruses and hosts. Revealing viral distribution in the natural plant communities improves our knowledge on the ecology of plant viruses.


Assuntos
Brassicaceae/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Brassicaceae/classificação , Genoma Viral , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Análise de Sequência de RNA
14.
Mol Ecol ; 27(5): 1284-1295, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29508497

RESUMO

Understanding how genetic variation within a foundation species determines the structure of associated communities and ecosystem processes has been an emerging frontier in ecology. Previous studies in common gardens identified close links between intraspecific variation and multispecies community structure, and these findings are now being evaluated directly in the complex natural ecosystem. In this study, we examined to what extent genomic variation in a foundation tree species explains the structure of associated arthropod communities in the field, comparing with spatial, temporal and environmental factors. In a continuous mixed forest, arthropods were surveyed on 85 mature alders (Alnus hirsuta) in 2 years. Moreover, we estimated Nei's genetic distance among the alders based on 1,077 single nucleotide polymorphisms obtained from restricted-site-associated DNA sequencing of the alders' genome. In both years, we detected significant correlations between genetic distance and dissimilarity of arthropod communities. A generalized dissimilarity modelling indicated that the genetic distance of alder populations was the most important predictor to explain the variance of arthropod communities. Among arthropod functional groups, carnivores were consistently correlated with genetic distance of the foundation species in both years. Furthermore, the extent of year-to-year changes in arthropod communities was more similar between more genetically closed alder populations. This study demonstrates that the genetic similarity rule would be primarily prominent in community assembly of plant-associated arthropods under temporally and spatially variable environments in the field.


Assuntos
Alnus/genética , Artrópodes/genética , Variação Genética , Alnus/anatomia & histologia , Alnus/fisiologia , Animais , Artrópodes/fisiologia , Florestas , Genética Populacional , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia
15.
Ann Bot ; 121(7): 1351-1360, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29579149

RESUMO

Background and Aims: An altitudinal gradient of leaf wettability is often observed between and within species. To understand its functional significance, positional variation of leaf surfaces within plants should be taken into account. In rosette-forming plants, rosette leaves are near the ground and their adaxial surfaces are exposed, whereas cauline leaves are lifted from the ground throughout the reproductive season, and their abaxial surfaces are more exposed. Here, we investigated leaf wettability of cauline and rosette leaves of Arabidopsis halleri subsp. gemmifera growing in contrasting montane habitats along an altitudinal gradient at Mt Ibuki, Japan. Methods: We conducted field investigations and a growth chamber experiment to determine whether field-observed variation in leaf wettability was caused by genetic differentiation. We further performed gene expression analysis of a wax-related gene, i.e. AhgCER1, a homologue of A. thaliana ECERIFERUM1 (CER1) that may be involved in differentiation of leaf wettability. Key Results: We found cauline-leaf specific genetic differentiation in leaf wettability between contrasting montane habitats. Cauline leaves of semi-alpine plants, especially on abaxial surfaces, were non-wettable. Cauline leaves of low-altitudinal understorey plants were wettable, and rosette leaves were also wettable in both habitats. AhgCER1 expression corresponded to observed leaf wettability patterns. Conclusions: Low wettability of cauline leaves is hypothesized to keep exposed surfaces dry when they are wrapping flowering buds in early spring, and presumably protects flowering buds from frost damage. The genetic system that controls wax content, specifically for cauline leaves, should be involved in the observed genetic differentiation, and AhgCER1 control is a strong candidate for the underlying genetic mechanism.


Assuntos
Arabidopsis/genética , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética , Altitude , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Ecossistema , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transcriptoma , Tricomas/anatomia & histologia , Tricomas/fisiologia , Água/metabolismo
16.
Ann Bot ; 121(3): 489-500, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29300816

RESUMO

Background and Aims: The processes and mechanisms underlying lineage diversification are major topics in evolutionary biology. Eurasian goldenrod species of the Solidago virgaurea complex show remarkable morphological and ecological diversity in the Japanese Archipelago, with ecotypic taxa well adapted to specific environments (climate, edaphic conditions and disturbance regimes). The species complex is a suitable model to investigate the evolutionary processes of actively speciating plant groups, due to its ability to evolve in relation to environmental adaptation and its historical population dynamics. Methods: Two chloroplast markers, 18 nuclear microsatellite markers and ddRAD-sequencing were used to infer population genetic demography of S. virgaurea complex with its related species/genera. Key Results: Our analysis showed that populations in Japan form an evolutionary unit, which was genetically diverged from adjacent continental populations. The phylogenetic structure within the archipelago strongly corresponds to the geography, but interestingly there is no concordance between genetic structure and ecotypic boundaries; neighbouring populations of distinct ecotypes share a genetic background. Conclusions: We propose that the traits specific to the ecotypic entities are maintained by natural selection or are very recently generated and have little effect on the genomes, making genome-wide genetic markers unsuitable for detecting ecotypic differentiation. Furthermore, some sporadically distributed taxa (found as rheophytes and alpine plants) were repeatedly generated from a more widespread taxon in geographically distant areas by means of selection. Overall, this study showed that the goldenrod complex has a high ability to evolve, enabling rapid ecological diversification over a recent timeframe.


Assuntos
Solidago/genética , DNA de Cloroplastos/genética , Ecologia , Variação Genética/genética , Genética Populacional , Japão , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Análise de Sequência de DNA
17.
Am Nat ; 190(3): E67-E77, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28829638

RESUMO

Natural plant populations exhibit genetic variation in defense traits against herbivores. Despite a growing body of evidence for herbivore-mediated selection on plant defenses, we still know little about how genetic variation persists in antiherbivore defense traits. Here we present field and experimental evidence for herbivore-mediated frequency-dependent selection that promotes the maintenance of trichome-producing (hairy) and trichomeless (glabrous) plants of Arabidopsis halleri subsp. gemmifera. First, in a natural population where the specialist leaf beetle Phaedon brassicae was prevalent, hairy plants were damaged less when the frequency of neighboring glabrous plants increased. Furthermore, temporal variation in the frequency of the two plant morphs showed that rarer morphs increased in frequency at the scale of 1-m-diameter patches between survey years. Using a mesocosm experiment, we demonstrated a rare-morph advantage for defense (leaf damage and herbivore abundance) and reproduction (flower and clone production) between hairy and glabrous plants in the presence of P. brassicae. However, this rare-morph advantage was not detected when beetles were absent, with glabrous plants having higher reproduction than hairy plants under these conditions regardless of frequency conditions. These findings highlight the overlooked but potentially critical role of herbivore-mediated apparent interaction in maintaining plant defense polymorphism.


Assuntos
Arabidopsis , Besouros , Herbivoria , Tricomas , Animais , Folhas de Planta , Polimorfismo Genético
18.
New Phytol ; 216(4): 1268-1280, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833204

RESUMO

Early stages of ecological speciation can create populations with an ecology and reproduction timing distinct from those of related populations. Landscape genetic models incorporating environmental heterogeneity and population-specific reproductive traits enable the processes of population genetic differentiation to be inferred. We investigated genome-wide genetic variation in ecotypic populations of Solidago virgaurea sensu lato, a herbaceous plant inhabiting a wide range of habitats (woodlands, serpentine barrens and alpine grasslands) and displaying remarkable variation in flowering time. Simultaneous evaluation of environmental factors revealed an overwhelming effect of soil type differences on neutral genetic differentiation, compared with elevational differences. This result probably reflects the abrupt environmental changes generated by geological boundaries, whereas mountain slopes exhibit clinal changes, facilitating gene exchange between neighbouring populations. Temporal isolation was positively associated with genetic differentiation, with some early-flowering serpentine populations having allele frequencies distinct from adjacent nonserpentine populations. Overall, this study highlights the importance of ecological processes and of evolution of flowering time to promote genetic differentiation of S. virgaurea populations in a complex landscape.


Assuntos
Asbestos Serpentinas , Ecossistema , Flores/fisiologia , Especiação Genética , Solidago/genética , Altitude , Japão , Solo
19.
Mol Ecol ; 26(1): 193-207, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27352992

RESUMO

The habitats of polyploid species are generally distinct from their parental species. Stebbins described polyploids as 'general purpose genotypes', which can tolerate a wide range of environmental conditions. However, little is known about its molecular basis because of the complexity of polyploid genomes. We hypothesized that allopolyploid species might utilize the expression patterns of both parents depending on environments (polyploid plasticity hypothesis). We focused on hydrological niche segregation along fine-scale soil moisture and waterlogging gradients. Two diploid species, Cardamine amara and Cardamine hirsuta, grew best in submerged and unsubmerged conditions, respectively, consistent with their natural habitats. Interestingly, the allotetraploid Cardamine flexuosa derived from them grew similarly in fluctuating as well as submerged and unsubmerged conditions, consistent with its wide environmental tolerance. A similar pattern was found in another species trio: allotetraploid Cardamine scutata and its parents. Using the close relatedness of Cardamine and Arabidopsis, we quantified genomewide expression patterns following dry and wet treatments using an Arabidopsis microarray. Hierarchical clustering analysis revealed that the expression pattern of C. flexuosa clustered with C. hirsuta in the dry condition and with C. amara in the wet condition, supporting our hypothesis. Furthermore, the induction levels of most genes in the allopolyploid were lower than in a specialist diploid species. This reflects a disadvantage of being allopolyploid arising from fixed heterozygosity. We propose that recurrent allopolyploid speciation along soil moisture and waterlogging gradients confers niche differentiation and reproductive isolation simultaneously and serves as a model for studying the molecular basis of ecological speciation and adaptive radiation.


Assuntos
Adaptação Fisiológica/genética , Cardamine/classificação , Ecossistema , Poliploidia , Transcriptoma , Diploide , Isolamento Reprodutivo , Água
20.
Mol Ecol ; 26(6): 1515-1532, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28099775

RESUMO

Genomewide markers enable us to study genetic differentiation within a species and the factors underlying it at a much higher resolution than before, which advances our understanding of adaptation in organisms. We investigated genomic divergence in Metrosideros polymorpha, a woody species that occupies a wide range of ecological habitats across the Hawaiian Islands and shows remarkable phenotypic variation. Using 1659 single nucleotide polymorphism (SNP) markers annotated with the genome assembly, we examined the population genetic structure and demographic history of nine populations across five elevations and two ages of substrates on Mauna Loa, the island of Hawaii. The nine populations were differentiated into two genetic clusters distributed on the lower and higher elevations and were largely admixed on the middle elevation. Demographic modelling revealed that the two genetic clusters have been maintained in the face of gene flow, and the effective population size of the high-altitude cluster was much smaller. A FST -based outlier search among the 1659 SNPs revealed that 34 SNPs (2.05%) were likely to be under divergent selection and the allele frequencies of 21 of them were associated with environmental changes along elevations, such as temperature and precipitation. This study shows a genomic mosaic of M. polymorpha, in which contrasting divergence patterns were found. While most genomic polymorphisms were shared among populations, a small fraction of the genome was significantly differentiated between populations in diverse environments and could be responsible for the dramatic adaptation to a wide range of environments.


Assuntos
Fluxo Gênico , Genética Populacional , Myrtaceae/genética , Havaí , Ilhas , Metagenômica , Polimorfismo de Nucleotídeo Único , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa