RESUMO
Charge transfer has proven to be an important mechanism in DNA photochemistry. In particular, guanine (dG) plays a major role as an electron donor, but the photophysical dynamics of dG-containing charge-transfer states have not been extensively investigated so far. Here, we use UV pump (266â nm) and picosecond IR probe (â¼5-7â µm) spectroscopy to study ultrafast dynamics in dG-containing short oligonucleotides as a function of sequence and length. For the pure purine oligomers, we observed lifetimes for the charge-transfer states of the order of several hundreds of picoseconds, regardless of the oligonucleotide length. In contrast, pyrimidine-containing dinucleotides d(GT) and d(GC) show much faster relaxation dynamics in the 10 to 30â ps range. In all studied nucleotides, the charge-transfer states are formed with an efficiency of the order of â¼50 %. These photophysical characteristics will lead to an improved understanding of DNA damage and repair processes.
Assuntos
DNA/química , Guanosina/química , Oligonucleotídeos/química , Raios Ultravioleta , Sequência de Bases , DNA/genética , Transporte de Elétrons/efeitos da radiação , Processos FotoquímicosRESUMO
Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (â¼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.
Assuntos
Planeta Terra , Origem da Vida , Raios Ultravioleta , Adenina/química , Prebióticos/análise , Água/químicaRESUMO
Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-ËG+Ë charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.
RESUMO
The clouds of Venus are believed to be composed of sulfuric acid (H2SO4) and minor constituents including iron-bearing compounds, and their respective concentrations vary with height in the thick Venusian atmosphere. This study experimentally investigates possible iron-bearing mineral phases that are stable under the unique conditions within Venusian clouds. Our results demonstrate that ferric iron can react with sulfuric acid to form two mineral phases: rhomboclase [(H5O2)Fe(SO4)2·3H2O] and acid ferric sulfate [(H3O)Fe(SO4)2]. A combination of these two mineral phases and dissolved Fe3+ in varying concentrations of sulfuric acid are shown to be good candidates for explaining the 200- to 300-nm and 300- to 500-nm features of the reported unknown UV absorber. We, therefore, hypothesize a rich and largely unexplored heterogeneous chemistry in the cloud droplets of Venus that has a large effect on the optical properties of the clouds and the behavior of trace gas species throughout Venus's atmosphere.
RESUMO
Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base. At the dimer level, our results confirm existing literature values of photodamage, whereas we now quantified the susceptibility of sequence motifs to UV irradiation up to previously inaccessible polymer lengths. This revealed the protective effect of the sequence context in preventing the formation of UV-lesions. For example, the rate to form dipyrimidine lesions is strongly reduced by nearby guanine bases. Our results provide a complete picture of the sensitivity of oligonucleotides to UV irradiation and allow us to predict their abundance in high-UV environments.
Assuntos
Oligonucleotídeos , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Oligonucleotídeos/genética , Dano ao DNA , Dímeros de Pirimidina , DNARESUMO
Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of â¼16% for GAU = U and â¼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of â¼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.
Assuntos
Reparo do DNA , Dímeros de Pirimidina , Dímeros de Pirimidina/química , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , RNA , DNA/química , Raios Ultravioleta , Dano ao DNARESUMO
Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry. We find that prebiotic freshwaters were largely transparent in the UV, contrary to assumptions in some models of prebiotic chemistry. Some waters, such as high-salinity waters like carbonate lakes, may be deficient in shortwave (≤220 nm) UV flux. More dramatically, ferrous waters can be strongly UV-shielded, particularly if the Fe2+ forms highly UV-absorbent species such as FeCN64-. Such waters may be compelling venues for UV-averse origin-of-life scenarios but are unfavorable for some UV-dependent prebiotic chemistries. UV light can trigger photochemistry even if attenuated through photochemical transformations of the absorber (e.g., eaq- production from halide irradiation), which may have both constructive and destructive effects for prebiotic syntheses. Prebiotic chemistries that invoke waters that contain such absorbers must self-consistently account for the chemical effects of these transformations. The speciation and abundance of Fe2+ in natural waters on early Earth is a major uncertainty and should be prioritized for further investigation, as it played a major role in UV transmission in prebiotic natural waters.
Assuntos
Planeta Terra , Carbonatos , Fotoquímica , Raios UltravioletaRESUMO
Carbon dioxide (CO2) is the major carbonaceous component of many planetary atmospheres, which includes the Earth throughout its history. Carbon fixation chemistry-which reduces CO2 to organics, utilizing hydrogen as the stoichiometric reductant-usually requires high pressures and temperatures, and the yields of products of potential use to nascent biology are low. Here we demonstrate an efficient ultraviolet photoredox chemistry between CO2 and sulfite that generates organics and sulfate. The chemistry is initiated by electron photodetachment from sulfite to give sulfite radicals and hydrated electrons, which reduce CO2 to its radical anion. A network of reactions that generates citrate, malate, succinate and tartrate by irradiation of glycolate in the presence of sulfite was also revealed. The simplicity of this carboxysulfitic chemistry and the widespread occurrence and abundance of its feedstocks suggest that it could have readily taken place on the surfaces of rocky planets. The availability of the carboxylate products on early Earth could have driven the development of central carbon metabolism before the advent of biological CO2 fixation.
RESUMO
Substitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose. Our transient absorption spectroscopy experiments demonstrate that thiocytosine exhibits 5 times longer excited-state lifetime and different excited-state absorption features than thiocytidine. On the basis of accurate quantum chemical simulations, we assign these differences to the dominant population of a shorter-lived triplet nπ* state in the nucleoside and longer-lived triplet ππ* states in the nucleobase. This explains the distinctive photoanomerziation of thiocytidine and indicates that the nucleoside will be a less efficient phototherapeutic agent with regard to singlet oxygen generation.
Assuntos
Nucleosídeos/química , Processos Fotoquímicos , Ribose/química , Enxofre/químicaRESUMO
We evaluate strategies to maximize the field of view (FOV) of in vivo retinal OCT imaging of human eyes. Three imaging modes are tested: Single volume imaging with 85° FOV as well as with 100° and stitching of five 60° images to a 100° mosaic (measured from the nodal point). We employ a MHz-OCT system based on a 1060nm Fourier domain mode locked (FDML) laser with a depth scan rate of 1.68MHz. The high speed is essential for dense isotropic sampling of the large areas. Challenges caused by the wide FOV are discussed and solutions to most issues are presented. Detailed information on the design and characterization of our sample arm optics is given. We investigate the origin of an angle dependent signal fall-off which we observe towards larger imaging angles. It is present in our 85° and 100° single volume images, but not in the mosaic. Our results suggest that 100° FOV OCT is possible with current swept source OCT technology.