Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell ; 149(4): 847-59, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22541070

RESUMO

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Assuntos
Elementos Alu , RNA Helicases DEAD-box/metabolismo , Atrofia Geográfica/imunologia , Atrofia Geográfica/patologia , Inflamassomos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas de Transporte/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Epitélio Pigmentado da Retina/patologia , Receptores Toll-Like/metabolismo
2.
Genes Dev ; 31(1): 1-2, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130343

RESUMO

Transcription by RNA polymerase II (Pol II) is dictated in part by core promoter elements, which are DNA sequences flanking the transcription start site (TSS) that help direct the proper initiation of transcription. Taking advantage of recent advances in genome-wide sequencing approaches, Vo ngoc and colleagues (pp. 6-11) identified transcripts with focused sites of initiation and found that many were transcribed from promoters containing a new consensus sequence for the human initiator (Inr) core promoter element.


Assuntos
Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Sequência de Bases , Sequência Consenso , Humanos , RNA Polimerase II/genética , TATA Box , Transcrição Gênica
3.
Biophys J ; 122(8): 1428-1444, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36871159

RESUMO

Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies, such as cartilage regeneration procedures, require 2D cell expansion processes to achieve large cell populations critical for the repair of damaged tissues. However, the limit of mechanical priming for cartilage regeneration procedures before inducing long-term mechanical memory following expansion processes is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood. Here, we identify a threshold to mechanical priming separating reversible and irreversible effects of mechanical memory. After 16 population doublings in 2D culture, expression levels of tissue-identifying genes in primary cartilage cells (chondrocytes) are not recovered when transferred to 3D hydrogels, while expression levels of these genes were recovered for cells only expanded for eight population doublings. Additionally, we show that the loss and recovery of the chondrocyte phenotype correlates with a change in chromatin architecture, as shown by structural remodeling of the trimethylation of H3K9. Efforts to disrupt the chromatin architecture by suppressing or increasing levels of H3K9me3 reveal that only with increased levels of H3K9me3 did the chromatin architecture of the native chondrocyte phenotype partially return, along with increased levels of chondrogenic gene expression. These results further support the connection between the chondrocyte phenotype and chromatin architecture, and also reveal the therapeutic potential of inhibitors of epigenetic modifiers as disruptors of mechanical memory when large numbers of phenotypically suitable cells are required for regeneration procedures.


Assuntos
Cartilagem Articular , Cartilagem , Condrócitos , Fenótipo , Cromatina/metabolismo , Epigênese Genética , Diferenciação Celular , Engenharia Tecidual/métodos
4.
RNA Biol ; 17(7): 956-965, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129700

RESUMO

The muscle specific miRNA, miR-206, is important for the process of myogenesis; however, studying the function of miR-206 in muscle development and differentiation still proves challenging because the complement of mRNA targets it regulates remains undefined. In addition, miR-206 shares close sequence similarity to miR-1, another muscle specific miRNA, making it hard to study the impact of miR-206 alone in cell culture models. Here we used CRISPR/Cas9 technology to knockout miR-206 in C2C12 muscle cells. We show that knocking out miR-206 significantly impairs and delays differentiation and myotube formation, revealing that miR-206 alone is important for myogenesis. In addition, we use an experimental affinity purification technique to identify new mRNA targets of miR-206 in C2C12 cells. We identified over one hundred mRNAs as putative miR-206 targets. Functional experiments on six of these targets indicate that Adam19, Bgn, Cbx5, Smarce1, and Spg20 are direct miR-206 targets in C2C12 cells. Our data show a unique and important role for miR-206 in myogenesis.


Assuntos
Regulação da Expressão Gênica , Técnicas de Inativação de Genes , MicroRNAs/genética , Desenvolvimento Muscular/genética , Interferência de RNA , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Mioblastos/metabolismo
5.
Methods ; 159-160: 45-50, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876965

RESUMO

RNA polymerase II (Pol II) transcribes eukaryotic mRNA genes. To initiate transcription, pre-initiation complexes (PICs) containing Pol II and general transcription factors (GTFs) form on the core promoters of target genes. In cells this process is regulated by transcriptional activators, co-activators, and chromatin modifying complexes. Reconstituted in vitro transcription systems are important tools for studying the enzymology and fundamental steps in the transcription reaction. In these systems, studying transcription can be complex due to the heterogeneous mixture of transcriptionally active and inactive complexes that assemble at promoters. Accordingly, we developed a technique to use single molecule microscopy to resolve this heterogeneity and distinguish transcriptionally active complexes from inactive complexes. This system uses fluorescently-labeled promoter DNA and a minimal reconstituted transcription system consisting of purified human Pol II and GTFs. Here we describe the materials, methods, and analysis required to study Pol II transcription at the single molecule level. The flexibility of our single molecule method allows for adaptation to answer diverse mechanistic questions about transcription that would otherwise be difficult to study using ensemble assays.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Imagem Individual de Molécula/métodos , Transcrição Gênica , Humanos , Imagem Óptica/métodos
6.
Nucleic Acids Res ; 44(15): 7132-43, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27112574

RESUMO

Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity.


Assuntos
Microscopia de Fluorescência/métodos , RNA Polimerase II/metabolismo , Imagem Individual de Molécula/métodos , Fatores Genéricos de Transcrição/metabolismo , Iniciação da Transcrição Genética , DNA/genética , DNA/metabolismo , Ensaios Enzimáticos , Enzimas Imobilizadas/metabolismo , Corantes Fluorescentes , Humanos , Regiões Promotoras Genéticas , Estabilidade Proteica , Imagem Individual de Molécula/instrumentação , Moldes Genéticos , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/metabolismo
7.
EMBO J ; 32(6): 781-90, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23395899

RESUMO

RNA polymerase II (Pol II) is a well-characterized DNA-dependent RNA polymerase, which has also been reported to have RNA-dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non-coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3'-end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α-amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3'-end.


Assuntos
RNA Polimerase II/fisiologia , Estabilidade de RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Elongação da Transcrição Genética , Animais , Sequência de Bases , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Células NIH 3T3 , Conformação de Ácido Nucleico , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/fisiologia , Transcrição Gênica/genética
8.
Nature ; 471(7338): 325-30, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21297615

RESUMO

Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.


Assuntos
Elementos Alu/genética , RNA Helicases DEAD-box/deficiência , Degeneração Macular/genética , Degeneração Macular/patologia , RNA/genética , RNA/metabolismo , Ribonuclease III/deficiência , Animais , Morte Celular , Sobrevivência Celular , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos Antissenso , Fenótipo , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ribonuclease III/genética , Ribonuclease III/metabolismo
9.
Trends Biochem Sci ; 37(4): 144-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22300815

RESUMO

Non-coding RNAs (ncRNAs) are now recognized as active participants in controlling many biological processes. Indeed, these products of transcription can even control the process of transcription itself. In the past several years, ncRNAs have been found to regulate transcription of single genes, as well as entire transcriptional programs, affecting the expression of hundreds to thousands of genes in response to developmental or environmental signals. Compared to more classical protein regulators, the list of ncRNAs that regulate mRNA transcription in mammalian cells is still small; however, the rate at which new ncRNA transcriptional regulators are being discovered is rapid, suggesting that models for how gene expression is controlled will continue to be redefined as this field develops.


Assuntos
RNA não Traduzido/genética , Transcrição Gênica/genética , Animais , Cromatina/genética , Humanos , Modelos Biológicos
10.
J Virol ; 90(5): 2503-13, 2015 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676778

RESUMO

UNLABELLED: Lytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. IMPORTANCE: We investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes differed from that on host cell genes, suggesting a unique mode of viral gene transcription. These studies provide new insight into how HSV-1 causes changes in the cellular program of gene expression and how the virus coopts host Pol II for its own use.


Assuntos
DNA/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , RNA Polimerase II/metabolismo , Replicação Viral , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Herpesvirus Humano 1/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA
11.
Mol Cell ; 29(4): 499-509, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18313387

RESUMO

Noncoding RNAs (ncRNAs) have recently been discovered to regulate mRNA transcription in trans, a role traditionally reserved for proteins. The breadth of ncRNAs as transacting transcriptional regulators and the diversity of signals to which they respond are only now becoming recognized. Here we show that human Alu RNA, transcribed from short interspersed elements (SINEs), is a transacting transcriptional repressor during the cellular heat shock response. Alu RNA blocks transcription by binding RNA polymerase II (Pol II) and entering complexes at promoters in vitro and in human cells. Transcriptional repression by Alu RNA involves two loosely structured domains that are modular, a property reminiscent of classical protein transcriptional regulators. Two other SINE RNAs, human scAlu RNA and mouse B1 RNA, also bind Pol II but do not repress transcription in vitro. These studies provide an explanation for why mouse cells harbor two major classes of SINEs, whereas human cells contain only one.


Assuntos
Elementos Alu/genética , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , RNA não Traduzido , Elementos Nucleotídeos Curtos e Dispersos , Transcrição Gênica , Animais , Linhagem Celular , Humanos , Camundongos , Conformação de Ácido Nucleico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(34): 13781-6, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869729

RESUMO

Deficient expression of the RNase III DICER1, which leads to the accumulation of cytotoxic Alu RNA, has been implicated in degeneration of the retinal pigmented epithelium (RPE) in geographic atrophy (GA), a late stage of age-related macular degeneration that causes blindness in millions of people worldwide. Here we show increased extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation in the RPE of human eyes with GA and that RPE degeneration in mouse eyes and in human cell culture induced by DICER1 depletion or Alu RNA exposure is mediated via ERK1/2 signaling. Alu RNA overexpression or DICER1 knockdown increases ERK1/2 phosphorylation in the RPE in mice and in human cell culture. Alu RNA-induced RPE degeneration in mice is rescued by intravitreous administration of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1, but not by inhibitors of other MAP kinases such as p38 or JNK. These findings reveal a previously unrecognized function of ERK1/2 in the pathogenesis of GA and provide a mechanistic basis for evaluation of ERK1/2 inhibition in treatment of this disease.


Assuntos
Regulação Enzimológica da Expressão Gênica , Degeneração Macular/enzimologia , Degeneração Macular/terapia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Camundongos , Fosforilação , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais
13.
Biomolecules ; 14(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397413

RESUMO

Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.


Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/química , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro
14.
Nat Chem Biol ; 7(3): 182-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278739

RESUMO

Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diterpenos/farmacologia , Fenantrenos/farmacologia , Fator de Transcrição TFIIH/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , DNA Helicases/química , Proteínas de Ligação a DNA/química , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/isolamento & purificação , Compostos de Epóxi/farmacologia , Células HeLa , Humanos , Fenantrenos/química , Fenantrenos/isolamento & purificação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/química
15.
Biochem Mol Biol Educ ; 51(2): 230-235, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597896

RESUMO

Transcription is the critical first step in expressing a gene, during which an RNA polymerase (RNAP) synthesizes an RNA copy of one strand of the DNA that encodes a gene. Here we describe a laboratory experiment that uses a single assay to probe two important steps in transcription: (1) RNAP binding to DNA, and (2) the transcriptional activity of the polymerase. Students probe both these steps in a single experiment using a fluorescence-based electrophoretic mobility shift assay (EMSA) and commercially available Escherichia coli RNAP. As an inquiry-driven component, students add the transcriptional inhibitor rifampicin to reactions and draw conclusions about its mechanism of inhibition by determining whether it blocks polymerase binding to DNA or transcriptional activity. Depending on the curriculum and learning goals of individual courses, this experimental module could be easily expanded to include additional experimentation that mimics a research environment more closely. After completing the experiment students understand basic principles of transcription, mechanisms of inhibition, and the use of EMSAs to probe protein/DNA interactions.


Assuntos
Proteínas de Ligação a DNA , Escherichia coli , Humanos , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Ligação a DNA/química , Ligação Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/química , Transcrição Gênica
16.
FEBS Open Bio ; 13(10): 1941-1952, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572351

RESUMO

Breast cancer is a leading cause of cancer-related deaths in women. Many genetic and behavioral risk factors can contribute to the initiation and progression of breast cancer, one being alcohol consumption. Numerous epidemiological studies have established a positive correlation between alcohol consumption and breast cancer; however, the molecular basis for this link remains ill defined. Elucidating ethanol-induced changes to global transcriptional programming in breast cells is important to ultimately understand how alcohol and breast cancer are connected mechanistically. We investigated induced transcriptional changes in response to a short cellular exposure to moderate levels of alcohol. We treated the nontumorigenic breast cell line MCF10A and the tumorigenic breast cell lines MDA-MB-231 and MCF7, with ethanol for 6 h, and then captured the changes to ongoing transcription using 4-thiouridine metabolic labeling followed by deep sequencing. Only the MCF10A cell line exhibited statistically significant changes in newly transcribed RNA in response to ethanol treatment. Further experiments revealed that some ethanol-upregulated genes are sensitive to the dose of alcohol treatment, while others are not. Gene Ontology and biochemical pathway analyses revealed that ethanol-upregulated genes in MCF10A cells are enriched in biological functions that could contribute to cancer development.


Assuntos
Neoplasias da Mama , Etanol , Feminino , Humanos , Etanol/efeitos adversos , Mama , Neoplasias da Mama/metabolismo , Linhagem Celular
17.
PLoS One ; 18(8): e0286193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37582100

RESUMO

The transcriptional activator p53 is a tumor suppressor protein that controls cellular pathways important for cell fate decisions, including cell cycle arrest, senescence, and apoptosis. It functions as a tetramer by binding to specific DNA sequences known as response elements (REs) to control transcription via interactions with co-regulatory complexes. Despite its biological importance, the mechanism by which p53 binds REs remains unclear. To address this, we have used an in vitro single molecule fluorescence approach to quantify the dynamic binding of full-length human p53 to five native REs in real time under equilibrium conditions. Our approach enabled us to quantify the oligomeric state of DNA-bound p53. We found little evidence that dimer/DNA complexes form as intermediates en route to binding or dissociation of p53 tetramer/DNA complexes. Interestingly, however, at some REs dimers can rapidly exchange from tetramer/DNA complexes. Real time kinetic measurements enabled us to determine rate constants for association and dissociation at all five REs, which revealed two kinetically distinct populations of tetrameric p53/RE complexes. For the less stable population, the rate constants for dissociation were larger at REs closest to consensus, showing that the more favorable binding sequences form the least kinetically stable complexes. Together our single molecule measurements provide new insight into mechanisms by which tetrameric p53 forms complexes on different native REs.


Assuntos
Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor , Humanos , Proteína Supressora de Tumor p53/genética , Ligação Proteica , Proteínas Supressoras de Tumor/genética , Elementos de Resposta , DNA/metabolismo
18.
Biochemistry ; 51(38): 7444-55, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22934924

RESUMO

TATA binding protein (TBP) is a key component of the eukaryotic RNA polymerase II transcription machinery that binds to TATA boxes located in the core promoter regions of many genes. Structural and biochemical studies have shown that when TBP binds DNA, it sharply bends the DNA. We used single-molecule fluorescence resonance energy transfer (smFRET) to study DNA bending by human TBP on consensus and mutant TATA boxes in the absence and presence of TFIIA. We found that the state of the bent DNA within populations of TBP-DNA complexes is homogeneous; partially bent intermediates were not observed. In contrast to the results of previous ensemble studies, TBP was found to bend a mutant TATA box to the same extent as the consensus TATA box. Moreover, in the presence of TFIIA, the extent of DNA bending was not significantly changed, although TFIIA did increase the fraction of DNA molecules bound by TBP. Analysis of the kinetics of DNA bending and unbending revealed that on the consensus TATA box two kinetically distinct populations of TBP-DNA complexes exist; however, the bent state of the DNA is the same in the two populations. Our smFRET studies reveal that human TBP bends DNA in a largely uniform manner under a variety of different conditions, which was unexpected given previous ensemble biochemical studies. Our new observations led to us to revise the model for the mechanism of DNA binding by TBP and for how DNA bending is affected by TATA sequence and TFIIA.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , Proteína de Ligação a TATA-Box/fisiologia , Humanos , Cinética , TATA Box
20.
Proc Natl Acad Sci U S A ; 106(14): 5569-74, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307572

RESUMO

Noncoding RNAs (ncRNAs) are now recognized as transregulators of eukaryotic transcription, a role once attributed exclusively to protein factors. Two ncRNAs in mammalian cells have been shown to repress general mRNA transcription by RNA polymerase II (Pol II) in response to heat shock: mouse B2 RNA and human Alu RNA. B2 and Alu RNAs bind directly and tightly to Pol II and co-occupy the promoters of repressed genes along with the polymerase. Here, we identified the molecular mechanism by which mouse B2 RNA and human Alu RNA repress Pol II transcription. Biochemical assays to probe the network of protein-DNA interactions at the promoter revealed that B2 and Alu RNAs prevent Pol II from establishing contacts with the promoter both upstream and downstream of the TATA box during closed complex formation. Disruption of these contacts correlates with transcriptional repression. We conclude that B2 and Alu RNA prevent Pol II from properly engaging the DNA during closed complex formation, resulting in complexes with an altered conformation that are transcriptionally inert. In the absence of its normal contacts with the promoter, Pol II is likely held in these inactive complexes on DNA through interactions with promoter-bound TATA box-binding protein and transcription factor IIB.


Assuntos
Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA não Traduzido/fisiologia , Transcrição Gênica , Animais , Regulação para Baixo/genética , Resposta ao Choque Térmico , Humanos , Camundongos , Ligação Proteica , RNA Polimerase II/metabolismo , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa