Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 580(7801): 81-86, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238944

RESUMO

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1-5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian-Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120-1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/história , Clima , Floresta Úmida , Temperatura , Regiões Antárticas , Fósseis , Sedimentos Geológicos/química , História Antiga , Modelos Teóricos , Nova Zelândia , Pólen , Esporos/isolamento & purificação
2.
Nature ; 547(7661): 43-48, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28682333

RESUMO

Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.


Assuntos
Congelamento , Aquecimento Global/história , Temperatura Alta , Camada de Gelo , Modelos Teóricos , Água do Mar/análise , Vento , Regiões Antárticas , Foraminíferos/química , Foraminíferos/isolamento & purificação , Sedimentos Geológicos/análise , Aquecimento Global/estatística & dados numéricos , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Oceanos e Mares , Reprodutibilidade dos Testes , Água do Mar/química
3.
Proc Natl Acad Sci U S A ; 113(13): 3453-8, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26903644

RESUMO

Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

4.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760120

RESUMO

The coasts of the West Antarctic Peninsula are strongly influenced by glacier meltwater discharge. The spatial structure and biogeochemical composition of inshore habitats are shaped by large quantities of terrigenous particulate material deposited in the vicinity of the coast, which impacts the pelagic and benthic ecosystems. We used a multitude of geochemical and environmental variables to identify the radius extension of the meltwater impact from the Fourcade Glacier into the fjord system of Potter Cove, King George Island. The k-means cluster algorithm, canonical correspondence analysis, variance analysis and Tukey's post hoc multiple comparison tests were applied to define and cluster coastal meltwater habitats. A minimum of 10 clusters were needed to classify the 8 km2 study area into meltwater fjord habitats (MFHs), fjord habitats and marine habitats. Strontium content in surface sediments is the main geochemical indicator for lithogenic creek discharge in Potter Cove. Furthermore, bathymetry, glacier distance and geomorphic positioning are the essential habitats explaining variables. The mean and maximum MFH extent amounted to 1 km and 2 km, respectively. Extrapolation of the identified meltwater impact ranges to King George Island coastlines, which are presently ice-covered bays and fjord areas, indicated an overall coverage of 200-400 km2 MFH, underpinning the importance of better understanding the biology and biogeochemistry in terrestrial marine transition zones.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

5.
Sci Adv ; 10(23): eadn6056, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838149

RESUMO

Extensive ice coverage largely prevents investigations of Antarctica's unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from >40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a >1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation.

6.
Sci Total Environ ; 903: 166157, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572912

RESUMO

The marine habitat beneath Antarctica's ice shelves spans ∼1.6 million km2, and life in this vast and extreme environment is among Earth's least accessible, least disturbed and least known, yet likely to be impacted by climate-forced warming and environmental change. Although competition among biota is a fundamental structuring force of ecological communities, hence ecosystem functions and services, nothing was known of competition for resources under ice shelves, until this study. Boreholes drilled through a âˆ¼ 200 m thick ice shelf enabled collections of novel sub-ice-shelf seabed sediment which contained fragments of biogenic substrata rich in encrusting (lithophilic) macrobenthos, principally bryozoans - a globally-ubiquitous phylum sensitive to environmental change. Analysis of sub-glacial biogenic substrata, by stereo microscopy, provided first evidence of spatial contest competition, enabling generation of a new range of competition measures for the sub-ice-shelf benthic space. Measures were compared with those of global open-water datasets traversing polar, temperate and tropical latitudes (and encompassing both hemispheres). Spatial competition in sub-ice-shelf samples was found to be higher in intensity and severity than all other global means. The likelihood of sub-ice-shelf competition being intraspecific was three times lower than for open-sea polar continental shelf areas, and competition complexity, in terms of the number of different types of competitor pairings, was two-fold higher. As posited for an enduring disturbance minimum, a specific bryozoan clade was especially competitively dominant in sub-ice-shelf samples compared with both contemporary and fossil assemblage records. Overall, spatial competition under an Antarctic ice shelf, as characterised by bryozoan interactions, was strikingly different from that of open-sea polar continental shelf sites, and more closely resembled tropical and temperate latitudes. This study represents the first analysis of sub-ice-shelf macrobenthic spatial competition and provides a new ecological baseline for exploring, monitoring and comparing ecosystem response to environmental change in a warming world.

7.
Curr Biol ; 31(24): R1566-R1567, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932962

RESUMO

Where polar ice sheets meet the coast, they can flow into the sea as floating ice shelves. The seabed underneath is in complete darkness, and may be Earth's least known surface habitat. Few taxa there have been fully identified to named species (see Supplemental information) - remarkable for a habitat spanning nearly 1.6 million km2. Glimpses of life there have come from cameras dropped through 10 boreholes, mainly at the three largest Antarctic ice shelves - the Ross (McMurdo), Filchner-Ronne and Amery. Pioneering studies of life under boreholes found distinct morphotypes of perhaps >50 species. Here, we report remarkable growth and persistence over thousands of years of benthic faunal species collected in 2018 from the seabed under the Ekström Ice Shelf (EIS), Weddell Sea.


Assuntos
Ecossistema , Camada de Gelo , Regiões Antárticas
8.
Nat Commun ; 12(1): 3948, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168158

RESUMO

The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the "cold water route" and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.

9.
Nat Commun ; 11(1): 424, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969564

RESUMO

Weddell Sea-derived Antarctic Bottom Water (AABW) is one of the most important deep water masses in the Southern Hemisphere occupying large portions of the deep Southern Ocean (SO) today. While substantial changes in SO-overturning circulation were previously suggested, the state of Weddell Sea AABW export during glacial climates remains poorly understood. Here we report seawater-derived Nd and Pb isotope records that provide evidence for the absence of Weddell Sea-derived AABW in the Atlantic sector of the SO during the last two glacial maxima. Increasing delivery of Antarctic Pb to regions outside the Weddell Sea traced SO frontal displacements during both glacial terminations. The export of Weddell Sea-derived AABW resumed late during glacial terminations, coinciding with the last major atmospheric CO2 rise in the transition to the Holocene and the Eemian. Our new records lend strong support for a previously inferred AABW overturning stagnation event during the peak Eemian interglacial.

10.
Sci Rep ; 9(1): 10628, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337844

RESUMO

We report the discovery of an important new cryptotephra within marine sediments close to Cape Hallett (northern Victoria Land), in the western Ross Sea, Antarctica. The cryptotephra is fully characterized for its texture, mineralogy and major- and trace-element data obtained on single glass shards. On the basis of geochemical composition, the cryptotephra is unequivocally correlated with the proximal deposits of an explosive eruption of the poorly known Mount Rittmann volcano, situated in northern Victoria Land. The cryptotephra is also correlated with a widespread tephra layer, which was erupted in 1254 C.E. and is present in numerous ice-cores and blue ice fields across East and West Antarctica. The characteristics of the tephra indicate that it was produced by a prolonged, moderate energy, mostly hydromagmatic eruption. This is the first time that a cryptotephra has been identified in marine sediments of the Ross Sea and in ice cores. It provides an important new and widespread stratigraphical datum with which the continental cryosphere and marine sedimentological records in Antarctica can be correlated. Moreover, from a purely volcanological point of view, the discovery further confirms the occurrence of a long-lasting, significant explosive eruption from Mount Rittmann in historical times that produced abundant widely dispersed fine ash. The study also highlights the inadequacy of current hazard assessments for poorly known volcanoes such as Mount Rittmann, located at high southern latitudes.

11.
PLoS One ; 12(7): e0181593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742864

RESUMO

Precise knowledge about the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM; c. 26.5-19 cal. ka BP) is important in order to 1) improve paleo-ice sheet reconstructions, 2) provide a robust empirical framework for calibrating paleo-ice sheet models, and 3) locate potential shelf refugia for Antarctic benthos during the last glacial period. However, reliable reconstructions are still lacking for many WAIS sectors, particularly for key areas on the outer continental shelf, where the LGM-ice sheet is assumed to have terminated. In many areas of the outer continental shelf around Antarctica, direct geological data for the presence or absence of grounded ice during the LGM is lacking because of post-LGM iceberg scouring. This also applies to most of the outer continental shelf in the Amundsen Sea. Here we present detailed marine geophysical and new geological data documenting a sequence of glaciomarine sediments up to ~12 m thick within the deep outer portion of Abbot Trough, a palaeo-ice stream trough on the outer shelf of the Amundsen Sea Embayment. The upper 2-3 meters of this sediment drape contain calcareous foraminifera of Holocene and (pre-)LGM age and, in combination with palaeomagnetic age constraints, indicate that continuous glaciomarine deposition persisted here since well before the LGM, possibly even since the last interglacial period. Our data therefore indicate that the LGM grounding line, whose exact location was previously uncertain, did not reach the shelf edge everywhere in the Amundsen Sea. The LGM grounding line position coincides with the crest of a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, an area of ≥6000 km2 remained free of grounded ice through the last glacial cycle, requiring the LGM grounding line position to be re-located in this sector, and suggesting a new site at which Antarctic shelf benthos may have survived the last glacial period.

12.
Nat Commun ; 8: 15591, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569750

RESUMO

Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments.

13.
Nat Commun ; 8: 14798, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303885

RESUMO

The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic South Georgia in particular. Here, using sea-floor geophysical data and marine sediment cores, we resolve the record of glaciation offshore of South Georgia through the transition from the Last Glacial Maximum to Holocene. We show a sea-bed landform imprint of a shelf-wide last glacial advance and progressive deglaciation. Renewed glacier resurgence in the fjords between c. 15,170 and 13,340 yr ago coincided with a period of cooler, wetter climate known as the Antarctic Cold Reversal, revealing a cryospheric response to an Antarctic climate pattern extending into the Atlantic sector of the Southern Ocean. We conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its glaciers to climate variability during the last termination more significant than implied by previous studies.

16.
Sci Rep ; 6: 25791, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173918

RESUMO

Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.

17.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130054, 2014 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-24891398

RESUMO

Fluxes of lithogenic material and fluxes of three palaeo-productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the (230)Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the EPICA Dome C ice core. Biogenic fluxes correlate with lithogenic fluxes in each sediment core. Our preferred interpretation is that South American dust, most probably from Patagonia, constitutes a major source of lithogenic material in Subantarctic South Atlantic sediments, and that past biological productivity in this region responded to variability in the supply of dust, probably due to biologically available iron carried by the dust. Greater nutrient supply as well as greater nutrient utilization (stimulated by dust) contributed to Subantarctic productivity during cold periods, in contrast to the region south of the Antarctic Polar Front (APF), where reduced nutrient supply during cold periods was the principal factor limiting productivity. The anti-phased patterns of productivity on opposite sides of the APF point to shifts in the physical supply of nutrients and to dust as cofactors regulating productivity in the Southern Ocean.


Assuntos
Poeira/análise , Alimentos , Modelos Biológicos , Água do Mar/química , Regiões Antárticas , Oceano Atlântico , Sedimentos Geológicos/química , Ferro/análise , Fitoplâncton/metabolismo , Fatores de Tempo
18.
Science ; 334(6060): 1265-9, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22144623

RESUMO

The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa