RESUMO
Neurodegenerative diseases are a group of complex diseases characterized by a progressive loss of neurons and degeneration in different areas of the nervous system. They share similar mechanisms, such as neuroinflammation, oxidative stress, and mitochondrial injury, resulting in neuronal loss. One of the biggest challenges in diagnosing neurodegenerative diseases is their heterogeneity. Clinical symptoms are usually present in the advanced stages of the disease, thus it is essential to find optimal biomarkers that would allow early diagnosis. Due to the development of ultrasensitive methods analyzing proteins in other fluids, such as blood, huge progress has been made in the field of biomarkers for neurodegenerative diseases. The application of protein biomarker measurement has significantly influenced not only diagnosis but also prognosis, differentiation, and the development of new therapies, as it enables the recognition of early stages of disease in individuals with preclinical stages or with mild symptoms. Additionally, the introduction of biochemical markers into routine clinical practice may improve diagnosis and allow for a stratification group of people with higher risk, as well as an extension of well-being since a treatment could be started early. In this review, we focus on blood biomarkers, which could be potentially useful in the daily medical practice of selected neurodegenerative diseases.
Assuntos
Biomarcadores , Doenças Neurodegenerativas , Humanos , Biomarcadores/sangue , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnósticoRESUMO
Recent investigations implicate neuroinflammatory changes, including astrocyte and microglia activation, as crucial in the progression of Alzheimer's disease (AD) Thus, we compared selected proteins reflecting neuroinflammatory processes to establish their connection to AD pathologies. Our study, encompassing 80 subjects with (n = 42) AD, (n = 18) mild cognitive impairment (MCI) and (n = 20) non-demented controls compares the clinical potential of tested molecules. Using antibody-based methods, we assessed concentrations of NGAL, CXCL-11, sTREM1, and sTREM2 in cerebrospinal fluid (CSF). Proinflammatory proteins, NGAL, and CXCL-11 reached a peak in the early stage of the disease and allowed for the identification of patients with MCI. Furthermore, the concentration of the anti-inflammatory molecule sTREM2 was highest in the more advanced stage of the disease and permitted differentiation between AD and non-demented controls. Additionally, sTREM2 was biochemically linked to tau and pTau in the AD group. Notably, NGAL demonstrated superior diagnostic performance compared to classical AD biomarkers in discriminating MCI patients from controls. These findings suggest that proteins secreted mainly through microglia dysfunction might play not only a detrimental but also a protective role in the development of AD pathology.
Assuntos
Doença de Alzheimer , Astrócitos , Biomarcadores , Disfunção Cognitiva , Lipocalina-2 , Glicoproteínas de Membrana , Microglia , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Biomarcadores/líquido cefalorraquidiano , Masculino , Feminino , Idoso , Microglia/metabolismo , Microglia/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Astrócitos/metabolismo , Lipocalina-2/líquido cefalorraquidiano , Lipocalina-2/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/líquido cefalorraquidiano , Receptores Imunológicos/metabolismo , Idoso de 80 Anos ou mais , Pessoa de Meia-IdadeRESUMO
Alzheimer disease (AD) is a chronic and heterogeneous neurodegenerative disorder characterized by complex pathological processes involving neuroinflammation, neurodegeneration, and synaptic dysfunction. Understanding the exact neurobiological mechanisms underlying AD pathology may help to provide a biomarker for early diagnosis or at least for assessment of vulnerability to dementia development. Neural plasticity is defined as a capability of the brain to respond to alterations including aging, injury, or learning, with a crucial role of synaptic elements. Long-term potentiation (LTP) and long-term depression (LTD) are important in regulating synaptic connections between neural cells in functional plasticity. Synaptic loss and impairment of the brain's plasticity in AD leads to cognitive impairment, and one of important roles of synaptic biomarkers is monitoring synaptic dysfunction, response to treatment, and predicting future development of AD. Synaptic biomarkers are undoubtedly very promising in developing novel approach to AD treatment and control, especially in the era of aging of societies, which is one of the most common risk factor of AD. Implementing a widespread measurement of synaptic biomarkers of AD will probably be crucial in early diagnosis of AD, early therapeutic intervention, monitoring progression of the disease, or response to treatment. One of the most important challenges is finding a biomarker whose blood concentration correlates with its level in the central nervous system (CNS). This review aims to present the current status of biomarkers of activity-dependent plasticity and persistent enhancement of synaptic transmission in Alzheimer disease.
Assuntos
Doença de Alzheimer , Humanos , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração , BiomarcadoresRESUMO
Obstructive sleep apnea (OSA) is a prevalent and underdiagnosed condition associated with cardiovascular diseases, depression, accidents, and stroke. There is an increasing need for alternative diagnostic tools beyond overnight sleep studies that measure the Apnea/Hypopnea Index (AHI). In this single-center, case-control study, we evaluated serum and plasma concentrations of IL-6, IL-8, IL-10, TNF-α, CRP, and S100B in 80 subjects, including 52 OSA patients (27 moderate [15 ≤ AHI Ë 30], 25 severe [AHI ≥ 30]) and 28 non-OSA controls (AHI 0-5). Participants with OSA showed approximately 2 times higher median concentrations of CRP in plasma, and IL-6 in serum, as well as 1.3 to 1.7 times higher concentrations of TNF-α and IL-8 in plasma compared with the control group. Receiver Operator Characteristic (ROC) curve analysis was performed to evaluate the predictive capabilities of these serum and plasma biomarkers in distinguishing between the OSA and control groups, revealing varying sensitivity and specificity. In summary, in this study, serum and plasma biomarkers CRP, S100B, IL-6, TNF-α, and IL-8 have been shown to be elevated in patients with OSA, correlated positively with disease severity, age, and BMI. These results support the potential role of these biomarkers in diagnosing OSA, supplementing traditional methods such as overnight sleep studies.
RESUMO
In addition to amyloid and tau pathology in the central nervous system (CNS), inflammatory processes and synaptic dysfunction are highly important mechanisms involved in the development and progression of dementia diseases. In the present study, we conducted a comparative analysis of selected pro-inflammatory proteins in the CNS with proteins reflecting synaptic damage and core biomarkers in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). To our knowledge, no studies have yet compared CXCL12 and CX3CL1 with markers of synaptic disturbance in cerebrospinal fluid (CSF) in the early stages of dementia. The quantitative assessment of selected proteins in the CSF of patients with MCI, AD, and non-demented controls (CTRL) was performed using immunoassays (single- and multiplex techniques). In this study, increased CSF concentration of CX3CL1 in MCI and AD patients correlated positively with neurogranin (r = 0.74; p < 0.001, and r = 0.40; p = 0.020, respectively), ptau181 (r = 0.49; p = 0.040), and YKL-40 (r = 0.47; p = 0.050) in MCI subjects. In addition, elevated CSF levels of CXCL12 in the AD group were significantly associated with mini-mental state examination score (r = -0.32; p = 0.040). We found significant evidence to support an association between CX3CL1 and neurogranin, already in the early stages of cognitive decline. Furthermore, our findings indicate that CXCL12 might be a useful marker for tract severity of cognitive impairment.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Sistema Nervoso Central , Quimiocina CXCL12 , Proteína 1 Semelhante à Quitinase-3 , Neurogranina , Quimiocina CX3CL1RESUMO
CLINICAL RATIONALE FOR THE STUDY: The course of COVID-19 in people with multiple sclerosis (PwMS) has been described, while the serological status after SARS-CoV-2 infection or vaccination, especially in patients treated with disease-modifying therapies (DMT), is still under investigation. This is a significant clinical problem, as certain DMTs may predispose to a severe course of viral infections. AIM OF THE STUDY: We analyzed the presence of antibodies against spike (S) and nucleocapsid (N) proteins of SARS-CoV-2 in relapsing-remitting PwMS treated with DMT, especially dimethyl fumarate, interferon beta, and glatiramer acetate, in a single multiple sclerosis (MS) centre in north-eastern Poland (the Department of Neurology, Medical University of Bialystok). MATERIAL AND METHODS: The presence of antibodies against S and N proteins in PwMS was assessed twice: on visit one (between May and June 2020) (n = 186) and on visit two (between May and June 2021) (n = 88). Samples were taken from 68 individuals on both visits. Demographic and clinical data was collected: duration of MS, Expanded Disability Status Scale Score (EDSS), type of DMT, history of COVID-19 (positive PCR or antigen test in the past), vaccination status, and the type of vaccine. RESULTS: It was shown that on visit one: 3.7% (n = 7) PwMS were positive for IgA against S protein (IgA-S), 3.2% (n = 6) for IgG against S (IgG-S) protein, and none of those examined was positive for IgG against N protein (IgG-N). On visit two, the most common detected antibodies were IgG-S (71.3%; n = 62), then IgA-S (65.1%; n = 55), and the least common was IgG-N (18.2%; n = 16). On visit two: 20.45% of PwMS had a history of a positive SARS-CoV-2 PCR or antigen test during the last year. By the time of visit two, 42.05% (n = 37) of patients who participated in visit two had been full-course vaccinated against COVID-19. It was demonstrated that vaccination against SARS-CoV-2 significantly induces the production of IgG-S and IgA-S (p < 0.0001), while no difference between vaccinated and unvaccinated patients was shown in the detection of IgG-N. There was no correlation between COVID-19 infection and antibodies against proteins S and N in the study group. Moreover, the presented study did not show any relationship between the ability to produce antibodies against the S protein with any of the used DMTs. CONCLUSIONS AND CLINICAL IMPLICATIONS: According to our study, PwMS treated with dimethyl fumarate, interferon beta, or glatiramer acetate can efficiently produce antibodies against SARS-CoV-2 both after infection and after vaccination.
Assuntos
COVID-19 , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , SARS-CoV-2 , Acetato de Glatiramer/uso terapêutico , Fumarato de Dimetilo/uso terapêutico , Interferon beta , N,N-Dimetiltriptamina , Imunoglobulina A , Imunoglobulina G , Anticorpos AntiviraisRESUMO
INTRODUCTION: The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. METHODS: We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. RESULTS: The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. DISCUSSION: This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidianoRESUMO
Alzheimer's disease (AD) is a progressive condition and the most common cause of dementia worldwide. The neuropathological changes characteristic of the disorder can be successfully detected before the development of full-blown AD. Early diagnosis of the disease constitutes a formidable challenge for clinicians. CSF biomarkers are the in vivo evidence of neuropathological changes developing in the brain of dementia patients. Therefore, measurement of their concentrations allows for improved accuracy of clinical diagnosis. Moreover, AD biomarkers may provide an indication of disease stage. Importantly, the CSF biomarkers of AD play a pivotal role in the new diagnostic criteria for the disease, and in the recent biological definition of AD by the National Institute on Aging, NIH and Alzheimer's Association. Due to the necessity of collecting CSF by lumbar puncture, the procedure seems to be an important issue not only from a medical, but also a legal, viewpoint. Furthermore, recent technological advances may contribute to the automation of AD biomarkers measurement and may result in the establishment of unified cut-off values and reference limits. Moreover, a group of international experts in the field of AD biomarkers have developed a consensus and guidelines on the interpretation of CSF biomarkers in the context of AD diagnosis. Thus, technological advancement and expert recommendations may contribute to a more widespread use of these diagnostic tests in clinical practice to support a diagnosis of mild cognitive impairment (MCI) or dementia due to AD. This review article presents up-to-date data regarding the usefulness of CSF biomarkers in routine clinical practice and in biomarkers research.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Diagnóstico Precoce , Humanos , Proteínas tauRESUMO
Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated with cognitive decline in Alzheimer's disease (AD) and other neurodegenerative diseases. This study aimed to assess the relationships between biological processes of the synaptic pathology underlying AD, molecular functions, and dynamics of the change concentrations of selected proteins reflecting synaptic and axonal pathology in dementia stages. Neurogranin (Ng), neuronal pentraxin receptor (NPTXR), and Visinin-like protein 1 (VILIP1) concentrations were measured in the cerebrospinal fluid (CSF) of MCI, AD, and non-demented controls (CTRL) using quantitative immunological methods. Gene ontology (GO) enrichment analysis was used for the functional analysis of tested proteins. The CSF Aß42/Ng ratio was significantly different between all the compared groups. The CSF NPTXR/Ng ratio was significantly different between MCI compared to CTRL and AD compared to CTRL. The GO enrichment analysis revealed that two terms (the Biological Process (BP) and Cellular Component (CC) levels) are significantly enriched for NPTXR and Ng but not for VILIP1. Both Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers for the early diagnosis of the disease. Moreover, both proteins are biochemically associated with classical biomarkers and VILIP-1. Mapping shared molecular and biological functions for the tested proteins by GO enrichment analysis may be beneficial in screening and setting new research targets.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/complicações , Biologia Computacional , Humanos , Neurocalcina/líquido cefalorraquidiano , Neurogranina/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismoRESUMO
SARS-CoV-2/Coronavirus 2019 (COVID-19) is responsible for the pandemic, which started in December 2019. In addition to the typical respiratory symptoms, this virus also causes other severe complications, including neurological ones. In diagnostics, serological and polymerase chain reaction tests are useful not only in detecting past infections but can also predict the response to vaccination. It is now believed that an immune mechanism rather than direct viral neuroinvasion is responsible for neurological symptoms. For this reason, it is important to assess the presence of antibodies not only in the serum but also in the cerebrospinal fluid (CSF), especially in the case of neuro-COVID. A particular group of patients are people with multiple sclerosis (MS) whose disease-modifying drugs weaken the immune system and lead to an unpredictable serological response to SARS-CoV-2 infection. Based on available data, the article summarizes the current serological information concerning COVID-19 in CSF in patients with severe neurological complications and in those with MS.
Assuntos
COVID-19 , Esclerose Múltipla , SARS-CoV-2/metabolismo , COVID-19/sangue , COVID-19/líquido cefalorraquidiano , COVID-19/terapia , Humanos , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/terapia , Esclerose Múltipla/virologiaRESUMO
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nogo/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapiaRESUMO
Neurogranin (Ng) and visinin-like protein 1 (VILIP-1) are promising candidates for Alzheimer's Disease (AD) biomarkers closely related to synaptic and neuronal degeneration. Both proteins are involved in calcium-mediated pathways. The meta-analysis was performed in random effects based on the ratio of means (RoM) with calculated pooled effect size. The diagnostic utility of these proteins was examined in cerebrospinal fluid (CSF) of patients in different stages of AD compared to control (CTRL). Ng concentration was also checked in various groups with positive (+) and negative (-) amyloid beta (Aß). Ng highest levels of RoM were observed in the AD (n = 1894) compared to CTRL (n = 2051) group (RoM: 1.62). Similarly, the VILIP-1 highest values of RoM were detected in the AD (n = 706) compared to CTRL (n = 862) group (RoM: 1.34). Concentrations of both proteins increased in more advanced stages of AD. However, Ng seems to be an earlier biomarker for the assessment of cognitive impairment. Ng appears to be related with amyloid beta, and the highest levels of Ng in CSF was observed in the group with pathological Aß+ status. Our meta-analysis confirms that Ng and VILIP-1 can be useful CSF biomarkers in differential diagnosis and monitoring progression of cognitive decline. Although, an additional advantage of the protein concentration Ng is the possibility of using it to predict the risk of developing cognitive impairment in normal controls with pathological levels of Aß1-42. Analyses in larger cohorts are needed, particularly concerning Aß status.
Assuntos
Doença de Alzheimer/fisiopatologia , Neurocalcina/metabolismo , Neurogranina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Diagnóstico Diferencial , Progressão da Doença , Humanos , Neurocalcina/líquido cefalorraquidiano , Neurocalcina/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Neurogranina/líquido cefalorraquidiano , Neurogranina/fisiologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Curva ROC , Proteínas tau/líquido cefalorraquidianoRESUMO
Alzheimer's disease (AD) is one of the most frequent neurodegenerative diseases affecting more than 35 million people in the world, and its incidence is estimated to triple by 2050. Alzheimer's disease is an age-related disease characterized by the progressive loss of memory and cognitive function, caused by the unstoppable neurodegeneration and brain atrophy. Current AD treatments only relieve the symptoms. The first molecular signs of the disease identified decades ago and were related to the tau neurofibrillary tangles and the ß amyloid plaques. Despite the considerable progress in the diagnostic field, there is no certain knowledge of the specific biomarkers reflecting molecular mechanisms that trigger the symptoms of the disease. Therefore, there is an enormous need to find biomarkers useful for early diagnosis, before the first symptoms appear, and develop new therapeutic targets, which would guarantee improving patients' quality of life. Researchers from all around the world are looking for biomarkers that can be identified in different biological fluids such as plasma, serum, and cerebrospinal fluid, specific for Alzheimer's disease. In this review, we would like to resume some of the most interesting discovery in pathological mechanisms underlying Alzheimer's disease and promising biomarkers.
Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Proteínas de Neurofilamentos/análise , Neurogranina/líquido cefalorraquidiano , Proteínas tau/análise , Biomarcadores/análise , Encéfalo/patologia , Humanos , Placa Amiloide/patologiaRESUMO
BACKGROUND: The mortality rate of pancreatic cancer (PC) is equal to its incidence and the majority of PC patients die within a few months of diagnosis. Therefore, a search for new biomarkers useful in the diagnosis and prognosis of PC is ongoing. OBJECTIVES: The aim of our study was to compare the utility of CXCR2 and CXCR4 in the diagnosis and prediction of PC with classical tumor marker (carcinoembryonic antigen, CEA) and marker of inflammation-C-reactive protein (CRP). PATIENTS AND METHODS: The study comprised 64 subjects - 32 PC patients and 32 healthy volunteers. Serum concentrations of tested proteins were analysed using immunological methods. RESULTS: Serum CXCR2 and CXCR4 concentrations, similarly to those of CEA and CRP, were significantly elevated in PC patients compared to healthy controls. Moreover, concentrations of CXCR4 were significantly correlated with CXCR2 and CRP levels, while CRP concentrations were correlated with CXCR2 and CEA levels. The diagnostic sensitivity and the predictive value for negative (PV-ve) results for CXCR4 were similar to those of CEA and higher than those of CXCR2 and CRP, while the area under the ROC curve (AUC) for CXCR4 was the highest among all tested proteins (CXCR2, CEA, CRP). Moreover, serum CXCR2 was found to be a significant predictor of PC risk. CONCLUSIONS: CXCR4 is a better candidate for a tumor marker than CXCR2 in the diagnosis of PC, while serum CXCR2 is a significant predictor of PC risk.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Pancreáticas/diagnóstico , Receptores CXCR4/sangue , Receptores de Interleucina-8B/sangue , Regulação para Cima , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/metabolismo , Antígeno Carcinoembrionário/sangue , Estudos de Casos e Controles , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Prognóstico , Sensibilidade e EspecificidadeRESUMO
Introduction. Since colorectal cancer (CRC) is the second most commonly diagnosed malignancy in Europe and third worldwide, novel biomarkers for diagnosing the disease are critically needed. Objectives. According to our knowledge, the present study is the first to evaluate the clinical usefulness of serum CXCL-8 (C-X-C motif chemokine 8) in the diagnosis and progression of CRC compared to classical tumor marker CEA (carcinoembryonic antigen) and marker of inflammation CRP (C-reactive protein). Patients and Methods. The study included 59 CRC patients and 46 healthy volunteers. Serum levels of selected proteins were measured using ELISA (enzyme-linked immunosorbent assay), CMIA (chemiluminescent microparticle immunoassay), and immunoturbidimetric methods. Results. Serum concentrations of CXCL-8, similarly to those of the classical tumor marker CEA and inflammatory state marker CRP, were significantly higher in CRC patients than in healthy controls. There were statistically significant differences in CXCL-8 concentrations between tumor stages, as established by the Kruskal-Wallis test and confirmed by the post hoc Dwass-Steele-Critchlow-Fligner test. CXCL-8 levels were also significantly elevated in CRC patients with distant metastases compared to patients in the subgroup without metastases. Diagnostic sensitivity, predictive values for negative results (NPV), and AUC (area under the Receiver Operating Characteristic Curve-ROC curve) of CXCL-8 were higher than those of CEA, while diagnostic specificity and predictive values for positive results (PPV) of CXCL-8 were higher than those of CRP. Conclusions. Our findings indicate greater utility of CXCL-8 in comparison to the classical tumor marker CEA in the diagnosis of CRC. Moreover, serum CXCL-8 might be a potential biomarker of colorectal cancer progression.
Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Interleucina-8/genética , Proteína C-Reativa , Antígeno CA-19-9 , Neoplasias Colorretais/diagnóstico , Progressão da Doença , Feminino , Humanos , Interleucina-8/metabolismo , Masculino , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Curva ROCRESUMO
The coronavirus 2019 disease (COVID-19) course and serological statuses of patients with relapsing-remitting multiple sclerosis (RRMS), treated with disease-modifying therapies (DMTs) are generally parallel that of the general population. Over the pandemic's course, however, a notable increase in the number of RRMS patients who received vaccination against severe acute respiratory coronavirus 2 (SARS-CoV-2) and those who had COVID-19 (symptomatic and asymptomatic) was reported. This virus and/or vaccination likely influenced DMT-treated RRMS patients' serological statuses regarding the presence of SARS-CoV-2 antibodies and their quantitative expression. This investigation assesses the presence and levels of the antibody directed against the S1 protein receptor binding domain (SRBD) and against the N protein of SARS-CoV-2 in 38 DMT-treated RRMS patients. The findings indicate that people vaccinated against SARS-CoV-2 exhibited significantly higher levels of IgG antibodies against S1-RBD at both assessment points. Patients with a prior history of COVID-19 demonstrated statistically significant increases in anti-N antibodies at visit 1, whereas such statistical significance was not observed at visit 2. DMT-treated RRMS patients generated neutralizing antibodies following vaccination and/or COVID-19 infection. Nevertheless, it is noteworthy that antibody levels more accurately reflect the serological status and exhibit a stronger correlation with vaccination than just the presence of antibodies.
RESUMO
BACKGROUND: Many epigenetic factors, including microRNAs, are involved in the process of changing gene expressions. Small non-coding RNA molecules, called miRNAs, are responsible for regulating gene translation by silencing or degrading target mRNAs. It is acknowledged that for many diseases, they may be novel diagnostic and prognostic biomarkers. Patients with autoimmune thyroid diseases are more likely to develop nodules in the thyroid tissue, and Hashimoto's thyroiditis and Graves' disease predispose patients to thyroid cancer. We evaluated the concentrations of microRNA molecules (miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p, miR-150-5p) in the blood of children with thyroid disorders. In addition, we wished to identify molecules whose change in concentration predisposes to the development of thyroid cancer. AIM: The aim of this study is to evaluate selected epigenetic elements by analyzing the levels of miR-15a-5p, miR-126-3p, miR-142-5p, miR-150-5p and miR-21-5p in the blood of pediatric patients with Graves' disease (n = 25), Hashimoto's thyroiditis (n = 26) and thyroid nodular disease (n = 20) compared to a control group of healthy children (n = 17). MATERIALS AND METHODS: The study consists of groups of children and adolescents aged 10-18 years with autoimmune thyroid disease, with thyroid nodular disease compared to a control group. The miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p and miR-150-5p molecules were determined through an immunoenzymatic assay using BioVendor reagents. RESULTS: There is a statistically significant decrease in the expression of the miR-15a-5p in children with Graves' disease (21.61 vs. 50.22 amol/µL, p = 0.03) and in patients with thyroid nodular disease compared to controls (20.23 vs. 50.22 amol/µL, p = 0.04). Higher levels of the miR-142-5p molecule are found in patients with thyroid disease (with GD-3.8 vs. 3.14 amol/µL, p = 0.01; with HT-3.7 vs. 3.14 amol/µL, p = NS, with thyroid nodular disease-4.16 vs. 3.14 amol/µL, p = 0.04). Lower levels of miR-126-3p were noted in the GD group compared to the control group (7.09 vs. 7.24 amol/µL, p = 0.02). No statistically significant changes in the expressions of miR-150-5p and miR-21-5p molecules were observed in the study groups. CONCLUSIONS: 1. The overexpression of the miR-142-5p molecule occurs in children and adolescents with thyroid diseases. 2. Decreased blood levels of miR-15a-5p predispose patients to the formation of focal lesions in the thyroid gland. 3. Identifying a lower expression of the miR-126-3p molecule in the blood of children with GD requires careful follow-up for the development of focal lesions in the thyroid gland and evaluation for their potential malignancy.
RESUMO
Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Neuropatologia , Plasma , Emaranhados Neurofibrilares , Autopsia , Proteínas tau , Biomarcadores , Peptídeos beta-AmiloidesRESUMO
Alzheimer's disease (AD) is a very common neurodegenerative disorder characterized by the gradual loss of neurons and extracellular amyloid-peptide buildup. There is compelling evidence that the disease process depends on neuroinflammatory alterations, such as the activation of astrocytes and microglia cells. A transmembrane glycoprotein known as glycoprotein nonmetastatic melanoma protein B (GPNMB) plays a neuroprotective role during the development of neurodegeneration. To the best of our knowledge, this is the first investigation discussing the potential clinical usefulness of this protein in the AD continuum, especially in the MCI (mild cognitive impairment) stage. A total of 71 patients with AD or MCI as well as controls were enrolled in this study. The concentrations of GPNMB, YKL-40, Aß1-42 (amyloid beta 1-42), Tau, and pTau and the Aß1-42/1-40 ratio in the CSF (cerebrospinal fluid) were tested using immunological methods. The concentrations of both GPNMB and YKL-40 in the cerebrospinal fluid were significantly higher in patients with AD and MCI compared to the controls. Moreover, both proteins were biochemically associated with classical biomarkers of AD and were especially associated with the Aß1-42/1-40 ratio and Tau and pTau levels in the whole study group. Elevated concentrations of GPNMB were observed in the Aß(+) group of AD patients compared to the Aß(-) subjects. Additionally, the diagnostic performance (AUC value) of GPNMB was higher than that of amyloid ß1-42 in MCI patients compared with controls. Our study indicates that GPNMB might be a promising neuroinflammatory biomarker for the early diagnosis and prognosis of the AD continuum, with potential utility as a therapeutic target.