Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076926

RESUMO

Beta-propeller protein-associated neurodegeneration (BPAN) is a subtype of neurodegeneration with brain iron accumulation (NBIA) caused by loss-of-function variants in WDR45. The underlying mechanism of iron accumulation in WDR45 deficiency remains elusive. We established a primary skin fibroblast culture of a new BPAN patient with a missense variant p.(Asn61Lys) in WDR45 (NM_007075.3: c.183C>A). The female patient has generalized dystonia, anarthria, parkinsonism, spasticity, stereotypies, and a distinctive cranial MRI with generalized brain atrophy, predominantly of the cerebellum. For the functional characterization of this variant and to provide a molecular link of WDR45 and iron accumulation, we looked for disease- and variant-related changes in the patient's fibroblasts by qPCR, immunoblotting and immunofluorescence comparing to three controls and a previously reported WDR45 patient. We demonstrated molecular changes in mutant cells comprising an impaired mitochondrial network, decreased levels of lysosomal proteins and enzymes, and altered autophagy, confirming the pathogenicity of the variant. Compared to increased levels of the ferritinophagy marker Nuclear Coactivator 4 (NCOA4) in control cells upon iron treatment, patients' cells revealed unchanged NCOA4 protein levels, indicating disturbed ferritinophagy. Additionally, we observed abnormal protein levels of markers of the iron-dependent cell death ferroptosis in patients' cells. Altogether, our data suggests that WDR45 deficiency affects ferritinophagy and ferroptosis, consequentially disturbing iron recycling.


Assuntos
Proteínas de Transporte , Ferroptose , Doenças Neurodegenerativas , Autofagia/genética , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Ferroptose/genética , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/genética
2.
J Neuroinflammation ; 15(1): 216, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068357

RESUMO

BACKGROUND: Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. METHODS: Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. RESULTS: A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. CONCLUSION: These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Sinapses/metabolismo , Sinaptossomos/metabolismo , Toxoplasmose Animal/patologia , Animais , Antiprotozoários/farmacologia , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metanálise como Assunto , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Sulfadiazina/farmacologia , Sinapses/patologia , Sinaptossomos/efeitos dos fármacos , Espectrometria de Massas em Tandem , Toxoplasma/patogenicidade
3.
Mov Disord ; 33(7): 1108-1118, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30153385

RESUMO

BACKGROUND: The most likely genetic cause of X-linked dystonia-parkinsonism, a neurodegenerative movement disorder endemic to the Philippines, is a 2672-bp-long retrotransposon insertion in intron 32 of the TAF1 gene. The objectives of this study were to investigate whether (1) TAF1 expression is altered in induced pluripotent stem cells and differentiated neuronal models and (2) excision of the retrotransposon insertion restores normal TAF1 expression. METHODS: Expression of TAF1 and its neuronal isoform were determined in induced pluripotent stem cells and in induced pluripotent stem cell-derived cortical neurons and spiny projection neurons using quantitative PCR. Genome editing-based excision of the retrotransposon insertion was performed on induced pluripotent stem cells from 3 X-linked dystonia-parkinsonism patients. Edited and unedited induced pluripotent stem cells from X-linked dystonia-parkinsonism patients and controls were differentiated into cortical neurons and spiny projection neurons, and TAF1 expression was compared across groups. RESULTS: TAF1 was reduced in patient-derived induced pluripotent stem cells (P < 0.05) and spiny projection neurons (P < 0.01). After genome editing, we observed higher TAF1 expression in edited compared with unedited induced pluripotent stem cells (P < 0.0001). In edited spiny projection neurons, TAF1 expression was also increased, but did not reach statistical significance. No expression differences were observed in cortical neurons. CONCLUSIONS: (1) TAF1 reduction in X-linked dystonia-parkinsonism is likely due to the retrotransposon insertion and is recapitulated in induced pluripotent stem cells and differentiated spiny projection neurons. (2) TAF1 reduction is a tractable molecular phenotype of X-linked dystonia-parkinsonism that can be driven by excision of the retrotransposon insertion. (3) Successful rescue of the molecular phenotype in an endogenous, genome-edited model serves as a proof of principle that may successfully be transferred to other inherited neurodegenerative diseases. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Edição de Genes/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Histona Acetiltransferases/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Adulto , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Fator 3 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Homeobox Nanog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transfecção , Tubulina (Proteína)/metabolismo
4.
J Exp Biol ; 217(Pt 8): 1215-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24363424

RESUMO

Honey bees display a fascinating division of labour among foragers. While some bees solely collect pollen, others only collect nectar. It is assumed that individual differences in sensory response thresholds are at the basis of this division of labour. Biogenic amines and their receptors are important candidates for regulating the division of labour, because they can modulate sensory response thresholds. Here, we investigated the role of the honey bee tyramine receptor AmTYR1 in regulating the division of foraging labour. We report differential splicing of the Amtyr1 gene and show differential gene expression of one isoform in the suboesophageal ganglion of pollen and nectar foragers. This ganglion mediates gustatory inputs. These findings imply a role for the honey bee tyramine receptor in regulating the division of foraging labour, possibly through the suboesophageal ganglion.


Assuntos
Comportamento Apetitivo , Abelhas/fisiologia , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Animais , Abelhas/genética , Encéfalo/metabolismo , Dados de Sequência Molecular , Neurópilo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa