RESUMO
BACKGROUND: Protection against Plasmodium falciparum is observed in a population deficient in glucose-6-phosphate dehydrogenase (G6PD), particularly in African and Mediterranean regions. However, such protection remains unknown among G6PD-deficient individuals in Southeast Asia. METHODS: In this study, we assessed the invasion and maturation of P falciparum K1 in a culture of erythrocytes isolated from Thai subjects carrying Viangchan (871Gâ >â A) and Mahidol (487Gâ >â A). RESULTS: We found that the parasites lost their ability to invade hemizygous and homozygous G6PD-deficient erythrocytes of Viangchan and Mahidol variants in the second and third cycles of intraerythrocytic development. It is interesting to note that P falciparum parasites selectively grew in erythrocytes from hemi- and homozygous genotypes with normal G6PD activity. Moreover, externalization of phosphatidylserine upon P falciparum infection was significantly increased only in Viangchan hemizygous variant cells. CONCLUSIONS: This study is the first to show that blockage of invasion in long-term culture and potentially enhanced removal of parasitized erythrocytes were observed for the first time in erythrocytes from Viangchan and Mahidol G6PD-deficient individuals.
Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária Falciparum , Eritrócitos/parasitologia , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Plasmodium falciparum/genéticaRESUMO
Zebrafish is a useful model to study vertebrate hematopoiesis, but lack of antibodies to zebrafish proteins has limited purification of hematopoietic cells. Here, we purified neutrophils from larval and adult zebrafish using the lectin Phaseolus vulgaris erythroagglutinin (PHA-E) and DRAQ5, a DNA-staining fluorescent dye. In adult kidney marrow, we purified neutrophil-like PHA-E4low DRAQ5low cells, which neutrophil-type granules. Specifically, at 96-hr post-fertilization, we sorted large-sized cells from larvae using forward scatter and found that they consisted of PHA-Elow DRAQ5low populations. These cells had myeloperoxidase activity, were Sudan Black B-positive and expressed high levels of neutrophil-specific (csf3r and mpx) mRNAs, all neutrophil characteristics. Using this method, we conducted functional analysis suggesting that zyxin (Zyx) plays a role in neutrophil generation in zebrafish larvae. Overall, PHA-E and DRAQ5-based flow cytometry serves as a tool to purify zebrafish neutrophils.
Assuntos
Citometria de Fluxo/métodos , Hematopoese , Neutrófilos/citologia , Cultura Primária de Células/métodos , Animais , Células Cultivadas , Lectinas/metabolismo , Neutrófilos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
Drug-resistant Plasmodium is a frequent global threat in malaria eradication programmes, highlighting the need for new anti-malarial drugs and efficient detection of treatment failure. Plasmodium falciparum culture is essential in drug discovery and resistance surveillance. Microscopy of Giemsa-stained erythrocytes is common for determining anti-malarial effects on the intraerythrocytic development of cultured Plasmodium parasites. Giemsa-based microscopy use is conventional but laborious, and its accuracy depends largely on examiner skill. Given the availability of nucleic acid-binding fluorescent dyes and advances in flow cytometry, the use of various fluorochromes has been frequently attempted for the enumeration of parasitaemia and discrimination of P. falciparum growth in drug susceptibility assays. However, fluorochromes do not meet the requirements of being fast, simple, reliable and sensitive. Thus, this review revisits the utility of fluorochromes, notes previously reported hindrances, and highlights the challenges and opportunities for using fluorochromes in flow cytometer-based drug susceptibility tests. It aims to improve drug discovery and support a resistance surveillance system, an essential feature in combatting malaria.
Assuntos
Antimaláricos/farmacologia , Citometria de Fluxo/métodos , Fluorescência , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos , Eritrócitos/parasitologia , Citometria de Fluxo/normas , Corantes Fluorescentes/normas , Testes de Sensibilidade Parasitária/normas , Coloração e RotulagemRESUMO
Fetal liver (FL) is the major embryonic hematopoietic organ and a site where circulating hematopoietic stem/progenitor cells (HSPCs) reside. However, HSPC migration/retention mechanisms in FL remain unclear. A chemokine screen revealed that the CCR4 ligands CCL17 and CCL22 are highly expressed in mouse embryonic day (E) 12.5 FL. Flow cytometric analysis confirmed CCR4 expression in FL HSPCs. To identify sources of CCL17 and CCL22, we fractionated FL into various cell types and found that Ccl17 and Ccl22 were predominantly expressed in HPCs/matured HCs. In vitro cell migration analysis confirmed enhanced HSPC migration in the presence of HPCs/matured HCs. Furthermore, exo-utero injection of anti-CCR4 neutralizing antibody into pregnant mice significantly reduced the number of FL HSPCs in embryos. These data demonstrate a paracrine mechanism by which HSPC migration/retention is regulated by CCL17 and CCL22 secreted from HPCs or matured HCs in FL.
Assuntos
Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Células-Tronco Hematopoéticas/citologia , Fígado/embriologia , Transdução de Sinais , Animais , Movimento Celular , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Comunicação ParácrinaRESUMO
BACKGROUND: Gold standard microscopic examination of Plasmodium falciparum intraerythrocytic stage remains an important process for staging and enumerating parasitized erythrocytes in culture; however, microscopy is laborious and its accuracy is dependent upon the skill of the examiner. METHODS: In this study, ViSafe Green (VSG), which is a nucleic acid-binding fluorescent dye, was used for assessing in vitro development of P. falciparum using flow cytometry. RESULTS: Fluorescence intensity of VSG was found to depend on the developmental stage of parasites. Specifically, multiple-nuclei-containing schizonts were observed in the VSGhigh population, and growing trophozoites and ring-shaped forms were observed in the VSGintermediate and VSGlow populations. The efficacy of VSG-based assay was found to be comparable to the microscopic examination method, and it demonstrated an ability to detect as low as 0.001% of the parasitaemia estimated by Giemsa staining. Moreover, when applying VSG for anti-malarial drug test, it was able to observe the growth inhibitory effect of dihydroartemisinin, the front-line drug for malaria therapy. CONCLUSIONS: Taken together, the results of this study suggest the VSG-based flow cytometric assay to be a simple and reliable assay for assessing P. falciparum malaria development in vitro.
Assuntos
Eritrócitos/parasitologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Plasmodium falciparum/crescimento & desenvolvimento , Coloração e Rotulagem/instrumentaçãoRESUMO
Zebrafish embryos are useful to study haematopoietic gene function in vertebrates, although lack of antibodies to zebrafish proteins has limited the purification of specific cell populations. Here, we purified primitive zebrafish erythrocytes using 1, 5-bis{[2-(di-methylamino)ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ5TM ), a DNA-staining fluorescent dye. At 48-h post-fertilization, we sorted small-sized cells from embryos using forward scatter and found that they consisted of DRAQ5high and DRAQ5low populations. DRAQ5high cells contained haemoglobin, lacked myeloperoxidase activity and expressed high levels of embryonic globin (hbae3 and hbbe1.1) mRNA, all characteristics of primitive erythrocytes. Following DRAQ5TM analysis of gata1:dsRed transgenic embryos, we purified primitive DRAQ5high dsRed+ erythrocytes from haematopoietic progenitor cells. Using this method, we identified docking protein 2 (Dok2) as functioning in differentiation of primitive erythrocytes. We conclude that DRAQ5TM -based flow cytometry enables purification of primitive zebrafish erythrocytes.
Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Hematopoese , Animais , Biomarcadores , Separação Celular/métodos , Citometria de Fluxo , Regulação da Expressão Gênica , Hematopoese/genética , Imunofenotipagem , Especificidade de Órgãos/genética , Peixe-ZebraRESUMO
In mouse fetal liver, hepatoblasts, sinusoidal endothelial cells and macrophages (or erythroblastic islands) promote differentiation and proliferation of hematopoietic cells through cell-cell interactions and secretion of cytokines and extracellular matrix factors. Until now, we have had little knowledge of the hematopoietic cytokines or extracellular matrix mRNAs expressed in hepatic stellate cells. Using p75 neurotrophin receptor (p75NTR) to mark this cell population, we sorted 12.5, 14.5 and 16.5 dpc hepatic stellate cells and analyzed expression of cytokines and extracellular matrix mRNAs. Among cytokines, insulin-like growth factor 2 (Igf2) was highly expressed at all three stages analyzed. The extracellular matrix molecule fibronectin (Fn1) was highly expressed in 12.5 dpc cells, whereas vitronectin (Vtn) was highly expressed in 14.5 and 16.5 dpc hepatic stellate cells. Among liver cells, Igf2 was predominantly expressed in hepatoblast-like cells at all three stages examined, suggesting that hepatoblast-like cells are an essential part of the niche that maintains homeostasis of hematopoietic cells in embryonic mouse liver. Defining these expression patterns could facilitate our understanding of cross talk between cytokine and extracellular matrix molecules in hepatic stellate cells and benefit research in developmental hematopoiesis as well as the study of liver biology.
Assuntos
Citocinas/metabolismo , Fibronectinas/metabolismo , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , RNA Mensageiro/metabolismo , Vitronectina/metabolismo , Animais , Citocinas/genética , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fator de Crescimento Insulin-Like II/genética , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/genética , Vitronectina/genéticaRESUMO
Some Kampo medicines that are herbal and traditional in Japan have had beneficial effects when given to patients with anemia. However, molecular mechanisms underlying their effects are unclear. To address this question, four Kampo medicines used to treat anemia-ninjin'yoeito (NYT), shimotsuto (SMT), juzentaihoto (JTT), and daibofuto (DBT)-were tested separately using in vitro cultures of mouse bone marrow mononuclear cells. Among them, NYT was most effective in stimulating cell proliferation and up-regulating Myc expression. Flow cytometry analysis indicated that, among hematopoietic components of those cultures, myeloid cells expressing CD45/Mac-1/Gr-1/F4/80 increased in number, but Ter119/CD71 erythroid cells did not. Accordingly, real-time PCR analysis showed up-regulation of the myeloid gene Pu.1, whereas the erythroid genes Gata1 and Klf1 were down-regulated. Overall, these findings provide molecular evidence that NYT accelerates myelopoiesis but not erythropoiesis in vitro.
Assuntos
Células da Medula Óssea/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Anemia/tratamento farmacológico , Animais , Células da Medula Óssea/citologia , Proliferação de Células , Células Cultivadas , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Genes myc , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismoRESUMO
Artemisinin combination therapy remains effective for the treatment of falciparum malaria. However, Plasmodium falciparum can escape the effects of artemisinin by arresting their growth. The growth-arrested parasites cannot be distinguished from nonviable parasites with standard microscopy techniques due to their morphological similarities. Here, we demonstrated the efficacy of a new laboratory assay that is compatible with the artemisinin susceptibility test. As a result of the differential cell permeabilities of two DNA-binding fluorophores, growth-arrested P. falciparum can be distinguished from parasites killed by artemisinin, since the latter lose cell membrane permeability. This fluorescence-based assay increased the sensitivity and specificity of the ring survival assay in the assessment of artemisinin susceptibility. When combined with a third fluorophore-conjugated anti-human leukocyte antibody, this trio fluorophore assay became more useful in identifying growth-arrested parasites in mock human blood samples. This novel assay is a simple and rapid technique for monitoring artemisinin resistance with greater sensitivity and accuracy compared with morphology-based observations under a light microscope.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Ionóforos/farmacologia , Resistência a MedicamentosRESUMO
The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.
Assuntos
Amebíase , Balamuthia mandrillaris , Encéfalo , Organoides , Humanos , Organoides/parasitologia , Balamuthia mandrillaris/efeitos dos fármacos , Encéfalo/parasitologia , Encéfalo/patologia , Amebíase/parasitologia , Amebíase/tratamento farmacológico , Trofozoítos/efeitos dos fármacos , Neurônios/parasitologia , Células-Tronco PluripotentesRESUMO
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies worldwide. Patients with G6PD deficiency are usually asymptomatic throughout their life but can develop acute hemolysis after exposure to free radicals or certain medications. Several studies have shown that serum miRNAs can be used as prognostic biomarkers in various types of hemolytic anemias. However, the impact of G6PD deficiency on circulating miRNA profiles is largely unknown. The present study aimed to assess the use of serum miRNAs as biomarkers for detecting hemolysis in the nonacute phase of G6PD deficiency. Patients with severe or moderate G6PD Viangchan (871G > A) deficiency and normal G6PD patients were enrolled in the present study. The biochemical hemolysis indices were normal in the three groups, while the levels of serum miR-451a, miR-16, and miR-155 were significantly increased in patients with severe G6PD deficiency. In addition, 3D analysis of a set of three miRNAs (miR-451a, miR-16, and miR-155) was able to differentiate G6PD-deficient individuals from healthy individuals, suggesting that these three miRNAs may serve as potential biomarkers for patients in the nonhemolytic phase of G6PD deficiency. In conclusion, miRNAs can be utilized as additional biomarkers to detect hemolysis in the nonacute phase of G6PD deficiency.
Assuntos
Biomarcadores , Deficiência de Glucosefosfato Desidrogenase , Hemólise , MicroRNAs , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Estudos de Casos e Controles , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , MicroRNAs/sangueRESUMO
BACKGROUND: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT: The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION: These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.
Assuntos
Via de Sinalização Hippo , Células-Tronco Pluripotentes Induzidas , Adulto , Animais , Humanos , Diferenciação Celular , Diarileptanoides/farmacologia , Antígenos CD34RESUMO
Introduction: The phenotypic screening of drugs against Balamuthia mandrillaris, a neuropathogenic amoeba, involves two simultaneous phases: an initial step to test amoebicidal activity followed by an assay for cytotoxicity to host cells. The emergence of three-dimensional (3D) cell cultures has provided a more physiologically relevant model than traditional 2D cell culture for studying the pathogenicity of B. mandrillaris. However, the measurement of ATP, a critical indicator of cell viability, is complicated by the overgrowth of B. mandrillaris in coculture with host cells during drug screening, making it challenging to differentiate between amoebicidal activity and drug toxicity to human cells. Methods: To address this limitation, we introduce a novel assay that utilizes three-dimensional hanging spheroid plates (3DHSPs) to evaluate both activities simultaneously on a single platform. Results and discussion: Our study showed that the incubation of neurospheroids with clinically isolated B. mandrillaris trophozoites resulted in a loss of neurospheroid integrity, while the ATP levels in the neurospheroids decreased over time, indicating decreased host cell viability. Conversely, ATP levels in isolated trophozoites increased, indicating active parasite metabolism. Our findings suggest that the 3DHSP-based assay can serve as an endpoint for the phenotypic screening of drugs against B. mandrillaris, providing a more efficient and accurate approach for evaluating both parasite cytotoxicity and viability.
RESUMO
Glucose-6-phosphate dehydrogenase (G6PD) deficiency impairs cellular processes under oxidative stress. Individuals with severe G6PD deficiency still produce sufficient numbers of erythrocytes. Nevertheless, the G6PD independence of erythropoiesis remains questionable. This study elucidates the effects of G6PD deficiency on the generation of human erythrocytes. Peripheral blood-derived CD34-positive hematopoietic stem and progenitor cells (HSPCs) of human subjects with normal, moderate, and severe G6PD activities were cultured in two distinct phases: erythroid commitment and terminal differentiation. Regardless of G6PD deficiency, HSPCs were able to proliferate and differentiate into mature erythrocytes. There was no impairment in erythroid enucleation among the subjects with G6PD deficiency. To our knowledge, this study is the first report of effective erythropoiesis independent of G6PD deficiency. The evidence firmly indicates that the population with the G6PD variant could produce erythrocytes to an extent similar to that in healthy individuals.
Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Diferenciação Celular , Eritrócitos , Eritropoese , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genéticaRESUMO
The use of megakaryoblastic leukemia MEG-01 cells can help reveal the mechanisms of thrombopoiesis. However, conventional in vitro activation of platelet release from MEG-01 cells requires thrombopoietin, which is costly. Here, we aim to develop a more straightforward and affordable method. Synchronization of the MEG-01 cells was initially performed using serum-free culture, followed by spontaneous cell differentiation in the presence of serum. Different stages of megakaryoblast differentiation were classified based on cell morphology, DNA content, and cell cycle. The MEG-01 cells released platelet-like particles at a level comparable to that of the thrombopoietin-activated MEG-01 cells. The platelet-like particles were distinguishable from PLP-derived extracellular vesicles and could express P-selectin following ADP activation. Importantly, the platelet-like particles induced fibrin clotting in vitro using platelet-poor plasma. Therefore, this thrombopoietin-independent cell synchronization method is an effective and straightforward method for studying megakaryopoiesis and thrombopoiesis.
Assuntos
Megacariócitos , Trombopoetina , Megacariócitos/metabolismo , Trombopoetina/farmacologia , Trombopoetina/metabolismo , Células Progenitoras de Megacariócitos , Plaquetas , TrombopoeseRESUMO
Introduction: Balamuthia (B.) mandrillaris is a free-living amoeba that can cause rare yet fatal granulomatous amoebic encephalitis (GAE). However, efficacious treatment for GAE is currently unavailable, especially when genomic studies on B. mandrillaris are limited. Methods: In this study, B. mandrillaris strain KM-20 was isolated from the brain tissue of a GAE patient, and its mitochondrial genome was de novo assembled using high-coverage Nanopore long reads and Illumina short reads. Results and Discussion: Phylogenetic and comparative analyses revealed a range of diversification in the mitochondrial genome of KM-20 and nine other B. mandrillaris strains. According to the mitochondrial genome alignment, one of the most variable regions was observed in the ribosomal protein S3 (rps3), which was caused by an array of novel protein tandem repeats. The repeating units in the rps3 protein tandem region present significant copy number variations (CNVs) among B. mandrillaris strains and suggest KM-20 as the most divergent strain for its highly variable sequence and highest copy number in rps3. Moreover, mitochondrial heteroplasmy was observed in strain V039, and two genotypes of rps3 are caused by the CNVs in the tandem repeats. Taken together, the copy number and sequence variations of the protein tandem repeats enable rps3 to be a perfect target for clinical genotyping assay for B. mandrillaris. The mitochondrial genome diversity of B. mandrillaris paves the way to investigate the phylogeny and diversification of pathogenic amoebae.
RESUMO
Vertebrates use adaptive mechanisms when exposed to physiologic stresses. However, the mechanisms of pigmentation regulation in response to physiologic stresses largely remain unclear. To address this issue, we developed a novel pigmentation model in adult zebrafish using coldwater exposure (cold zebrafish). When zebrafish were maintained at 17 °C, the pigmentation of their pigment stripes was reduced compared with zebrafish at 26.5 °C (normal zebrafish). In cold zebrafish, gene expression levels of tyrosinase and dopachrome tautomerase, which encode enzymes involved in melanogenesis, were down-regulated, suggesting that either down-regulation of melanin synthesis occurred or the number of melanophores decreased. Both regular and electron microscopic observation of zebrafish skin showed that the number of melanophores decreased, whereas aggregation of melanosomes was not changed in cold zebrafish compared with normal zebrafish. Taken together, we here show that cold exposure down-regulated adult zebrafish pigmentation through decreasing the number of melanophores and propose that the cold zebrafish model is a powerful tool for pigmentation research.
Assuntos
Melanóforos/metabolismo , Pigmentação da Pele/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Temperatura Baixa , Regulação para Baixo , Proteínas de Choque Térmico HSC70/metabolismo , Oxirredutases Intramoleculares/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Pigmentação da Pele/genética , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
Hmgn2 (high mobility group nucleosomal 2), a ubiquitous nucleosome-binding protein that unfolds chromatin fibres and enhances DNA replication, reportedly regulates differentiation of epithelial and mesenchymal cells. To investigate how Hmgn2 regulates HC (haemopoietic cell) differentiation, we quantified Hmgn2 expression in HCs of mouse FL (fetal liver) during erythroid differentiation. Hmgn2 expression levels were >10-fold higher in immature erythroid progenitors than in mature erythroid cells, suggesting that Hmgn2 antagonizes erythroid differentiation. To address this issue, Hmgn2 were transfected into both Friend erythroleukaemia cells and FL HCs. There was a 3.3-fold decrease in relatively mature c-Kit(+)/CD71(+) erythroid cells, a 2.9-fold increase in immature c-Kit(+)/CD71(-) erythroid cells in transfected Friend cells, a 1.1-fold decrease in relatively mature CD71(+)/Ter119(+) erythroid cells, and a 1.7-fold increase in relatively immature c-Kit(+)/CD71(+) erythroid cells in FL HCs accompanied by down-regulation of genes encoding the erythroid transcription factors, Gata1 and Klf1. Two days after Hmgn2 transfection of Friend erythroleukaemia cells, the number of S-phase cells increased, whereas the number of cells in G(1) decreased, while that of mitotic cells remained unchanged. We conclude that ectopic expression of Hmgn2 antagonizes mouse erythroid differentiation in vitro, which may be due to enhancement of DNA replication and/or blocking entry of mitosis at S-phase.
Assuntos
Diferenciação Celular/fisiologia , Células Eritroides/citologia , Proteína HMGN2/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Fator de Transcrição GATA1/metabolismo , Perfilação da Expressão Gênica , Proteína HMGN2/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Fase SRESUMO
A spheroid is a cell aggregate in a three-dimensional context; thereby, it recapitulates the cellular architecture in human tissue. However, the utility of spheroids as an assay for host-parasite interactions remains unexplored. This study demonstrates the potential use of neurospheroids for assessing the cytotoxicity of the life-threatening pathogenic amoeba Balamuthia mandrillaris. The neuroblastoma SH-SY5Y cells formed a spheroid in a hanging drop of culture medium. Cellular damage caused by B. mandrillaris trophozoites on human neuronal spheroids was observed using microscopic imaging and ATP detection. B. mandrillaris trophozoites rapidly caused a decrease in ATP production in the spheroid, leading to loss of neurospheroid integrity. Moreover, 3D confocal microscopy imaging revealed interactions between the trophozoites and SH-SY5Y neuronal cells in the outer layer of the neurospheroid. In conclusion, the neurospheroid allows the assessment of host cell damage in a simple and quantitative manner.
RESUMO
BACKGROUND: Environmental protozoa need an adaptation mechanism to survive drastic changes in niches in the human body. In the brain parenchyma, Balamuthia mandrillaris trophozoites, which are causative agents of fatal brain damage, must acquire nutrients through the ingestion of surrounding cells. However, the mechanism deployed by the trophozoites for cellular uptake remains unknown. METHODS: Amoebic ingestion of human neural cell components was investigated using a coculture system of clinically isolated B. mandrillaris trophozoites and human neuroblastoma SH-SY5Y cells. Cell-to-cell interactions were visualized in a three-dimensional manner using confocal and holotomographic microscopes. RESULTS: The B. mandrillaris trophozoites first attached themselves to human neuroblastoma SH-SY5Y cells and then twisted themselves around the cytoplasmic bridge. Based on fluorescence-based cell tracking, the B. mandrillaris trophozoites then inserted invadopodia into the cytoplasm of the human cells. Subsequently, the human protein-enriched components were internalized into the trophozoites in the form of nonmembranous granules, whereas the human lipids were dispersed in the cytoplasm. Intervention of trogocytosis, a process involving nibbling on parts of the target cells, failed to inhibit this cellular uptake. CONCLUSIONS: Human cell ingestion by B. mandrillaris trophozoites likely differs from trogocytosis, suggesting that a pathogen-specific strategy can be used to ameliorate brain damage.