Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Inorg Chem ; 61(13): 5363-5372, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319883

RESUMO

Zero-dimensional (0D) metal halide hybrids with high exciton binding energy are excellent materials for lighting applications. Controlling/modulating the structure of the constituent metal halide units allows tunability of their photoluminescence properties. 0D manganese halide hybrids are currently attracting research efforts in lighting applications due to their eco-friendly and strong emission. However, structural transformation-induced tunability of their photophysical properties has rarely been reported. Herein, we demonstrate a rational synthetic strategy to modulate the structure and luminescence properties of 0D Mn(II) halide hybrids utilizing the structure-directing d10 metal ions (Cd2+/Zn2+). 0D metal halide hybrids of Cd2+/Zn2+, which act as hosts with tunable structures, accept Mn2+ ions as substitutional dopants. This structural flexibility of the host d10 metal ions is realized by optimizing the metal-to-ligand ratio (Cd/AEPip). This reaction parameter allows structural transformation from an octahedral (AEPipCdMnBrOh) to a tetrahedral (AEPipCdMnBrTd) 0D Mn halide hybrid with tunable luminescence (orange → green) with high photoluminescence quantum yield. Interestingly, when Zn2+ is utilized, a tetrahedral AEPipZnMnBr structure forms exclusively with strong green emission. Optical and single-crystal X-ray diffraction structural analysis of the host and the doped system supports our experimental data and confirms the structure-directing role played by Cd2+/Zn2+ centers. This work demonstrates a rational strategy to modulate the structure/luminescence properties of 0D Mn(II) halide hybrids, which can further be implemented for other 0D metal halide hybrids.

2.
Inorg Chem ; 57(21): 13443-13452, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30335991

RESUMO

Low dimensional lead halide perovskites have attracted huge research interest due to their structural diversity and remarkable photophysical properties. The ability to controllably change dimensionality/structure of perovskites remains highly challenging. Here, we report synthetic control on structure/dimensionality of ethylenediammonium (ED) lead bromide perovskite from a two dimensionally networked (2DN) sheet to a one dimensionally networked (1DN) chain structure. Intercalation of solvent molecules into the perovskite plays a crucial role in directing the final dimensionality/structure. This change in dimensionality reflects strongly in the observed differences in photophysical properties. Upon UV excitation, the 1DN structure emits white light due to easily formed " self-trapped" excitons. 2DN perovskites show band edge blue emission (∼410 nm). Interestingly, Mn2+ incorporated 2DN perovskites show a highly red-shifted Mn2+ emission peak at ∼670 nm. Such a long wavelength Mn2+ emission peak is unprecedented in the perovskite family. This report highlights the synthetic ability to control the dimensionality/structure of perovskite and consequently its photophysical properties.

3.
Nano Lett ; 12(6): 3031-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22568894

RESUMO

A new class of nanocrystal quantum dot (NQD), the "giant" NQD (g-NQD), was investigated for its potential to address outstanding issues associated with the use of NQDs as down-conversion phosphors in light-emitting devices, namely, insufficient chemical/photostability and extensive self-reabsorption when packed in high densities or in thick films. Here, we demonstrate that g-NQDs afford significantly enhanced operational stability compared to their conventional NQD counterparts and minimal self-reabsorption losses. The latter results from a characteristic large Stokes shift (>100 nm; >0.39 eV), which itself is a manifestation of the internal structure of these uniquely thick-shelled NQDs. In carefully prepared g-NQDs, light absorption occurs predominantly in the shell but emission occurs exclusively from the core. We directly compare for the first time the processes of shell→core energy relaxation and core→core energy transfer by evaluating CdS→CdSe down-conversion of blue→red light in g-NQDs and in a comparable mixed-NQD (CdSe and CdS) thin film, revealing that the internal energy relaxation process affords a more efficient and color-pure conversion of blue to red light compared to energy transfer. Lastly, we demonstrate the facile fabrication of white-light devices with correlated color temperature tuned from ∼3200 to 5800 K.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Transferência de Energia , Teste de Materiais , Tamanho da Partícula
4.
J Phys Chem Lett ; 14(21): 4933-4940, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212528

RESUMO

Multimetallic halide hybrids are attractive for the fundamental understanding of interacting excitons. However, realizing halide hybrids that incorporate multiple heterometal centers has been synthetically challenging. This further limits access to gaining physical insight into the electronic coupling mechanism between the constituent metal halide units. Reported herein is an emissive heterometallic halide hybrid, synthesized by codoping (with Mn2+, Sb3+) a 2D host (C6H22N4CdCl6) hybrid, that shows strong dopant-dopant interaction. Here, C6H22N4Sb0.003Mn0.128Cd0.868Cl6 codoped hybrid shows weak green emission (Sb3+ dopant based) and strong orange emission (Mn2+ dopant based). The observed dominance of the Mn2+ dopant emission, arising due to efficient energy transfer between the distant dopants (Sb3+ → Mn2+), highlights strong dopant-dopant electronic coupling. DFT calculations, supporting the observed dopant-dopant interaction, suggest that the electronic coupling between the dopant units (Mn-Cl; Sb-Cl) is mediated by the 2D networked host structure. This work reports physical insight into the coupling mechanism of interacting excitons in multimetallic halide hybrids synthesized through a codoping strategy.

5.
Nanoscale ; 15(21): 9372-9389, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165674

RESUMO

Cs2AgInCl6 double perovskite (DP) nanocrystals (NCs) are an emerging class of materials with promising application potential in photonics/optoelectronics owing to their nontoxicity, direct bandgap, and high thermal and moisture stability. These NCs are, however, rarely explored for nonlinear optical (NLO) applications. Herein, we present a comprehensive investigation of the photophysical and nonlinear optical properties of erbium- (Er) and ytterbium (Yb)-doped Cs2AgInCl6 nanocrystals (denoted as Er-DP and Yb-DP, respectively). Temperature-dependent photoluminescence of these NCs was analyzed to estimate their exciton binding energy, Huang-Rhys parameter (S), and electron-phonon coupling strength, which are of fundamental interest to gain an in-depth understanding of the material systems. Femtosecond Z-scan experiments with 800 nm excitation revealed the reverse saturable absorption (RSA) behavior owing to three-photon absorption (3PA). The obtained values of the 3PA coefficients were 1.35 × 10-4 and 1.64 × 10-4 cm3 GW-2, respectively, and the nonlinear refractive indices were estimated to be 1.02 × 10-15 and 1.15 × 10-15 cm2 W-1, respectively, for Er-DP and Yb-DP. These values are superior to those obtained in undoped Cs2AgInCl6 NCs. The physical parameter, Kane energy, which is closely related to the magnitude of the oscillator strength, was estimated to be 25 eV and 26 eV for Er-DP and Yb-DP, respectively. As a proof-of-concept application, we further obtained the optical limiting onset and figure of merit to reveal their prospect as an optical limiter and in photonic switching application. With such emission and nonlinear optical properties, we anticipate that lanthanide-doped Cs2AgInCl6 NCs can be used for designing eco-friendly nonlinear optoelectronic/photonic devices.

6.
Nano Lett ; 10(8): 3184-9, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698635

RESUMO

Clusters of plasmonic nanoparticles and nanostructures support Fano resonances. Here we show that this spectral feature, produced by the interference between bright and dark modes of the nanoparticle cluster, is strongly dependent upon both geometry and local dielectric environment. This permits a highly sensitive tunability of the Fano dip in both wavelength and amplitude by varying cluster dimensions, geometry, and relative size of the individual nanocluster components. Plasmonic nanoclusters show an unprecedented sensitivity to dielectric environment with a local surface plasmon resonance figure of merit of 5.7, the highest yet reported for localized surface plasmon resonance sensing in a finite nanostructure.

7.
Analyst ; 134(9): 1745-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19684894

RESUMO

Nanoshells are optically tunable core-shell nanostructures with demonstrated uses in surface enhanced spectroscopies. Based on their ability to support surface plasmons, which give rise to strongly enhanced electromagnetic fields at their surface, nanoshells provide simple, scalable, high-quality substrates. In this article, we outline the development and use of nanoshell-based substrates for direct, spectroscopic detection of biomolecules. Recent advances in the use of these nanostructures lead to improved spectroscopic quality, selectivity, and reproducibility.


Assuntos
Bicamadas Lipídicas/análise , Nanoconchas , Peptídeos/análise , Ressonância de Plasmônio de Superfície/métodos , DNA/análise , Proteínas/análise , Análise Espectral Raman/métodos
8.
J Phys Chem B ; 112(45): 14168-75, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18942873

RESUMO

The incorporation of small molecules into lipid bilayers is a process of biological importance and clinical relevance that can change the material properties of cell membranes and cause deleterious side effects for certain drugs. Here we report the direct observation, using surface-enhanced Raman and IR spectroscopies (SERS, SEIRA), of the insertion of ibuprofen molecules into hybrid lipid bilayers. The alkanethiol-phospholipid hybrid bilayers were formed onto gold nanoshells by self-assembly, where the underlying nanoshell substrates provided the necessary enhancements for SERS and SEIRA. The spectroscopic data reveal specific interactions between ibuprofen and phospholipid moieties and indicate that the overall hydrophobicity of ibuprofen plays an important role in its intercalation in these membrane mimics.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ibuprofeno/química , Bicamadas Lipídicas/química , Vibração , Adsorção , Nanoestruturas/química , Espectrofotometria Infravermelho , Análise Espectral Raman , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 7(24): 13125-30, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26053473

RESUMO

Efficient, stable, and narrowband red-emitting fluorophores are needed as down-conversion materials for next-generation solid-state lighting that is both efficient and of high color quality. Semiconductor quantum dots (QDs) are nearly ideal color-shifting phosphors, but solution-phase efficiencies have not traditionally extended to the solid-state, with losses from both intrinsic and environmental effects. Here, we assess the impacts of temperature and flux on QD phosphor performance. By controlling QD core/shell structure, we realize near-unity down-conversion efficiency and enhanced operational stability. Furthermore, we show that a simple modification of the phosphor-coated light-emitting diode device-incorporation of a thin spacer layer-can afford reduced thermal or photon-flux quenching at high driving currents (>200 mA).

11.
Nanoscale ; 1(1): 114-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20644868

RESUMO

To investigate the dynamics of exchange/transfer of lipids between membranes, we have studied the interaction of donor-deuterated DMPC vesicles with DMPC hybrid bilayers on Au nanoshells using SERS. Experimental data confirm partial lipid exchange/transfer in the outer leaflet of the hybrid bilayer. The kinetics of the exchange/transfer process follows a first order process with a rate constant of 1.3 x 10(-4) s(-1). Changes in lipid phase behavior caused by the exchange/transfer process were characterized using generalized polarization measurements. In situ lipid transfer can potentially be utilized for preparation of asymmetric supported lipid bilayers and for incorporation of reporter lipids in biological membranes.


Assuntos
Dimiristoilfosfatidilcolina , Ouro/química , Bicamadas Lipídicas , Nanoconchas/química , Análise Espectral Raman/métodos , Medição da Troca de Deutério , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Propriedades de Superfície
12.
Chem Soc Rev ; 37(5): 898-911, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18443675

RESUMO

Our understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing electromagnetic enhancements for surface enhanced Raman scattering (SERS). The concepts developed for nanoshell-based substrates can be generalized to other nanoparticle geometries and scaled to other spectroscopies, such as surface enhanced infrared absorption spectroscopy (SEIRA).


Assuntos
Nanoestruturas/química , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Nanopartículas Metálicas/química , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
13.
ACS Nano ; 2(4): 707-18, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206602

RESUMO

Nanoshell arrays have recently been found to possess ideal properties as a substrate for combining surface enhanced raman scattering (SERS) and surface enhanced infrared absorption (SEIRA) spectroscopies, with large field enhancements at the same spatial locations on the structure. For small interparticle distances, the multipolar plasmon resonances of individual nanoshells hybridize and form red-shifted bands, a relatively narrow band in the near-infrared (NIR) originating from quadrupolar nanoshell resonances enhancing SERS, and a very broadband in the mid-infrared (MIR) arising from dipolar resonances enhancing SEIRA. The large field enhancements in the MIR and at longer wavelengths are due to the lightning-rod effect and are well described with an electrostatic model.


Assuntos
Metais/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Espectrofotometria Infravermelho/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Raios Infravermelhos , Luz , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
14.
J Chem Phys ; 127(20): 204703, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18052442

RESUMO

The plasmon response of a spherical metallic shell becomes significantly more complex as its size is increased beyond the quasistatic limit. With increasing size and decreasing aspect ratio (r1/r2), higher order multipolar modes contribute in a more dominant manner, and two distinct core-shell geometries exist that provide the same dipole plasmon resonance, with differing relative multipolar contributions in their overall spectral response. With further increase in particle size, the geometric tunability of the core-shell structure disappears, and in the infinite radius limit the plasmon response is consistent with that of a thin metallic film.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa