Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7974): 634-642, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438525

RESUMO

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Assuntos
Alérgenos , Aprendizagem da Esquiva , Hipersensibilidade , Mastócitos , Animais , Camundongos , Alérgenos/imunologia , Aprendizagem da Esquiva/fisiologia , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Estômago/imunologia , Vagotomia , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Células Th2/imunologia , Citocinas/imunologia , Leucotrienos/biossíntese , Leucotrienos/imunologia , Intestino Delgado/imunologia
2.
Physiol Rev ; 101(1): 213-258, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525759

RESUMO

Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.


Assuntos
Dor Aguda/fisiopatologia , Encéfalo/fisiopatologia , Dor Crônica/fisiopatologia , Rede Nervosa/fisiopatologia , Animais , Humanos , Vias Neurais , Neurotransmissores , Transdução de Sinais/fisiologia
3.
Physiol Rev ; 101(1): 259-301, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584191

RESUMO

Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.


Assuntos
Sistema Nervoso Central/fisiopatologia , Neuralgia/fisiopatologia , Neuralgia/terapia , Animais , Humanos , Fibras Nervosas , Nervos Periféricos/fisiopatologia , Sistema Nervoso Periférico/fisiopatologia
4.
Nature ; 606(7912): 137-145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614217

RESUMO

Nerve injury leads to chronic pain and exaggerated sensitivity to gentle touch (allodynia) as well as a loss of sensation in the areas in which injured and non-injured nerves come together1-3. The mechanisms that disambiguate these mixed and paradoxical symptoms are unknown. Here we longitudinally and non-invasively imaged genetically labelled populations of fibres that sense noxious stimuli (nociceptors) and gentle touch (low-threshold afferents) peripherally in the skin for longer than 10 months after nerve injury, while simultaneously tracking pain-related behaviour in the same mice. Fully denervated areas of skin initially lost sensation, gradually recovered normal sensitivity and developed marked allodynia and aversion to gentle touch several months after injury. This reinnervation-induced neuropathic pain involved nociceptors that sprouted into denervated territories precisely reproducing the initial pattern of innervation, were guided by blood vessels and showed irregular terminal connectivity in the skin and lowered activation thresholds mimicking low-threshold afferents. By contrast, low-threshold afferents-which normally mediate touch sensation as well as allodynia in intact nerve territories after injury4-7-did not reinnervate, leading to an aberrant innervation of tactile end organs such as Meissner corpuscles with nociceptors alone. Genetic ablation of nociceptors fully abrogated reinnervation allodynia. Our results thus reveal the emergence of a form of chronic neuropathic pain that is driven by structural plasticity, abnormal terminal connectivity and malfunction of nociceptors during reinnervation, and provide a mechanistic framework for the paradoxical sensory manifestations that are observed clinically and can impose a heavy burden on patients.


Assuntos
Hiperalgesia , Neuralgia , Nociceptores , Pele , Animais , Dor Crônica/fisiopatologia , Hiperalgesia/fisiopatologia , Mecanorreceptores/patologia , Camundongos , Neuralgia/fisiopatologia , Nociceptores/patologia , Pele/inervação , Pele/fisiopatologia
5.
Nat Rev Neurosci ; 22(8): 458-471, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34127843

RESUMO

The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.


Assuntos
Analgesia , Neocórtex/fisiopatologia , Percepção da Dor/fisiologia , Dor/fisiopatologia , Animais , Humanos , Vias Neurais/fisiopatologia , Manejo da Dor
6.
Mol Psychiatry ; 26(4): 1376-1398, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31444474

RESUMO

Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.


Assuntos
Medo , Memória , Proteínas do Tecido Nervoso , Semaforinas , Animais , Moléculas de Adesão Celular , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios , Semaforinas/genética
7.
Mol Psychiatry ; 26(9): 4616-4632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32612250

RESUMO

In mammals, most adult neural stem cells (NSCs) are located in the ventricular-subventricular zone (V-SVZ) along the wall of the lateral ventricles and they are the source of olfactory bulb interneurons. Adult NSCs exhibit an apico-basal polarity; they harbor a short apical process and a long basal process, reminiscent of radial glia morphology. In the adult mouse brain, we detected extremely long radial glia-like fibers that originate from the anterior-ventral V-SVZ and that are directed to the ventral striatum. Interestingly, a fraction of adult V-SVZ-derived neuroblasts dispersed in close association with the radial glia-like fibers in the nucleus accumbens (NAc). Using several in vivo mouse models, we show that newborn neurons integrate into preexisting circuits in the NAc where they mature as medium spiny neurons (MSNs), i.e., a type of projection neurons formerly believed to be generated only during embryonic development. Moreover, we found that the number of newborn neurons in the NAc is dynamically regulated by persistent pain, suggesting that adult neurogenesis of MSNs is an experience-modulated process.


Assuntos
Neurogênese , Núcleo Accumbens , Animais , Ventrículos Laterais , Camundongos , Neurônios , Bulbo Olfatório , Dor
8.
J Neurosci ; 40(35): 6664-6677, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32616667

RESUMO

Wnt signaling represents a highly versatile signaling system, which plays critical roles in developmental morphogenesis as well as synaptic physiology in adult life and is implicated in a variety of neural disorders. Recently, we demonstrated that Wnt3a is able to recruit multiple noncanonical signaling pathways to alter peripheral sensory neuron function in a nociceptive modality-specific manner. Furthermore, several studies recently reported an important role for Wnt5a acting via canonical and noncanonical signaling in spinal processing of nociception in a number of pathologic pain disorders. Here, using diverse molecular, genetic, and behavioral approaches in mouse models of pain in vivo, we report a novel role for Wnt5a signaling in nociceptive modulation at the structural level. In models of chronic pain, using male and female mice, we found that Wnt5a is released spinally from peripheral sensory neurons, where it recruits the tyrosine kinase receptors Ror2 and Ryk to modulate dendritic spine rearrangement. Blocking the Wnt5a-Ryk/Ror2 axis in spinal dorsal horn neurons prevented activity-dependent dendritic spine remodeling and significantly reduced mechanical hypersensitivity induced by peripheral injury as well as inflammation. Moreover, we observed that peripheral Wnt3a signaling triggers the release of Wnt5a in the spinal cord, and inhibition of spinal Wnt5a signaling attenuates the functional impact of peripheral Wnt3a on nociceptive sensitivity. In conclusion, this study reports a novel role for the Wnt signaling axis in coordinating peripheral and spinal sensitization and shows that targeting Wnt5a-Ryk/ROR2 signaling alleviates both structural and functional mechanisms of nociceptive hypersensitivity in models of chronic pain in vivoSIGNIFICANCE STATEMENT There is a major need to elucidate molecular mechanisms underlying chronic pain disorders to develop novel therapeutic approaches. Wnt signaling represents a highly versatile signaling system, which plays critical roles during development and adult physiology, and it was implicated in several diseases, including chronic pain conditions. Using mouse models, our study identifies a novel role for Wnt5a signaling in nociceptive modulation at the spinal cord level. We observed that Wnt5a recruits Ror2 and Ryk receptors to enhance dendritic spine density, leading to nociceptive sensitization. Blocking the Wnt5a-Ryk/Ror2 interaction in the spinal dorsal horn prevented spine remodeling and significantly reduced inflammatory and neuropathic hypersensitivity. These findings provide proof-of-concept for targeting spinal Wnt signaling for alleviating nociceptive hypersensitivity in vivo.


Assuntos
Dor do Câncer/metabolismo , Espinhas Dendríticas/metabolismo , Neuralgia/metabolismo , Nociceptividade , Proteína Wnt-5a/metabolismo , Proteína Wnt3A/metabolismo , Animais , Dor do Câncer/fisiopatologia , Linhagem Celular Tumoral , Células Cultivadas , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Neuralgia/fisiopatologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteína Wnt-5a/genética , Proteína Wnt3A/genética
9.
Diabetologia ; 64(12): 2843-2855, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480211

RESUMO

AIMS/HYPOTHESIS: The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. METHODS: Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. RESULTS: In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). CONCLUSIONS/INTERPRETATION: This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Biomarcadores , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/patologia , Seguimentos , Humanos , Hiperalgesia/complicações , Neurônios/metabolismo , Projetos Piloto
10.
Gastroenterology ; 159(2): 665-681.e13, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330476

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by excruciating pain, which has been associated with attraction of cancer cells and their invasion of intrapancreatic sensory nerves. Neutralization of the chemokine CCL2 reduced cancer-associated pain in a clinical trial, but there have been no systematic analyses of the highly diverse chemokine families and their receptors in PDAC. METHODS: We performed an open, unbiased RNA-interference screen of mammalian chemokines in co-cultures of mouse PDAC cells (K8484) and mouse peripheral sensory neurons, and confirmed findings in studies of DT8082 PDAC cells. We studied the effects of chemokines on migration of PDAC cell lines. Orthotopic tumors were grown from K8484 cells in mice, and mice were given injections of neutralizing antibodies against chemokines, antagonists, or control antibodies. We analyzed abdominal mechanical hypersensitivity and collected tumors and analyzed them by histology and immunohistochemistry to assess neural remodeling. We collected PDAC samples and information on pain levels from 74 patients undergoing resection and measured levels of CXCR3 and CCR7 by immunohistochemistry and immunoblotting. RESULTS: Knockdown of 9 chemokines in DRG neurons significantly reduced migration of PDAC cells towards sensory neurons. Sensory neuron-derived CCL21 and CXCL10 promoted migration of PDAC cells via their receptors CCR7 and CXCR3, respectively, which were expressed by cells in orthotopic tumors and PDAC specimens from patients. Neutralization of CCL21 or CXCL10, or their receptors, in mice with orthotopic tumors significantly reduced nociceptive hypersensitivity and nerve fiber hypertrophy and improved behavioral parameters without affecting tumor infiltration by T cells or neutrophils. Increased levels of CXCR3 and CCR7 in human PDAC specimens were associated with increased frequency of cancer-associated pain, determined from patient questionnaires. CONCLUSIONS: In an unbiased screen of chemokines, we identified CCL21 and CXCL10 as proteins that promote migration of pancreatic cancer cells toward sensory neurons. Inhibition of these chemokines or their receptors reduce hypersensitivity in mice with orthotopic tumors, and patients with PDACs with high levels of the chemokine receptors of CXCR3 and CCR7 had increased frequency of cancer-associated pain.


Assuntos
Dor do Câncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Quimiocina CCL21/metabolismo , Quimiocina CXCL10/metabolismo , Gânglios Espinais/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Receptoras Sensoriais/metabolismo , Analgésicos/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Dor do Câncer/genética , Dor do Câncer/patologia , Dor do Câncer/prevenção & controle , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CCL21/antagonistas & inibidores , Quimiocina CCL21/genética , Quimiocina CXCL10/antagonistas & inibidores , Quimiocina CXCL10/genética , Técnicas de Cocultura , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Humanos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores CCR7/metabolismo , Receptores CXCR3/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais
11.
Nat Rev Neurosci ; 18(1): 20-30, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974843

RESUMO

Chronic pain is not simply a temporal continuum of acute pain. Studies on functional plasticity in neural circuits of pain have provided mechanistic insights and linked various modulatory factors to a change in perception and behaviour. However, plasticity also occurs in the context of structural remodelling and reorganisation of synapses, cells and circuits, potentially contributing to the long-term nature of chronic pain. This Review discusses maladaptive structural plasticity in neural circuits of pain, spanning multiple anatomical and spatial scales in animal models and human patients, and addresses key questions on structure-function relationships.


Assuntos
Dor Crônica/patologia , Rede Nervosa/patologia , Neuroimagem , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Sinapses/metabolismo , Animais , Dor Crônica/fisiopatologia , Humanos , Rede Nervosa/fisiopatologia
12.
Mol Pain ; 15: 1744806919827469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30638145

RESUMO

Chronic pain is a pathological manifestation of neuronal plasticity supported by altered gene transcription in spinal cord neurons that results in long-lasting hypersensitivity. Recently, the concept that epigenetic regulators might be important in pathological pain has emerged, but a clear understanding of the molecular players involved in the process is still lacking. In this study, we linked Dnmt3a2, a synaptic activity-regulated de novo DNA methyltransferase, to chronic inflammatory pain. We observed that Dnmt3a2 levels are increased in the spinal cord of adult mice following plantar injection of Complete Freund's Adjuvant, an in vivo model of chronic inflammatory pain. In vivo knockdown of Dnmt3a2 expression in dorsal horn neurons blunted the induction of genes triggered by Complete Freund's Adjuvant injection. Among the genes whose transcription was found to be influenced by Dnmt3a2 expression in the spinal cord is Ptgs2, encoding for Cox-2, a prime mediator of pain processing. Lowering the levels of Dnmt3a2 prevented the establishment of long-lasting inflammatory hypersensitivity. These results identify Dnmt3a2 as an important epigenetic regulator needed for the establishment of central sensitization. Targeting expression or function of Dnmt3a2 may be suitable for the treatment of chronic pain.


Assuntos
Dor Crônica/complicações , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Hiperalgesia/metabolismo , Inflamação/complicações , Células do Corno Posterior/metabolismo , Regulação para Cima/fisiologia , Animais , Capsaicina/farmacologia , Células Cultivadas , Dor Crônica/induzido quimicamente , Dor Crônica/patologia , Ciclo-Oxigenase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Modelos Animais de Doenças , Proteínas de Escherichia coli/metabolismo , Adjuvante de Freund/toxicidade , Lateralidade Funcional , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Medição da Dor , Fosfopiruvato Hidratase/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Medula Espinal/patologia , Regulação para Cima/efeitos dos fármacos
13.
Mol Pain ; 14: 1744806918817975, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453826

RESUMO

Diabetic peripheral neuropathy is a major debilitating late complication of diabetes, which significantly reduces the quality of life in patients. Diabetic peripheral neuropathy is associated with a wide spectrum of sensory abnormalities, where in loss of sensation or hypoalgesia to applied external stimuli is paradoxically accompanied by debilitating tonic spontaneous pain. In numerous studies on animal models of diabetic peripheral neuropathy, behavioural measurements have been largely confined to analysis of evoked withdrawal to mechanical and thermal stimuli applied to dermatomes, whereas spontaneous, on-going pain has not been widely studied. In the Streptozotocin model of type 1 diabetes, we employed the Conditioned Place Preference test to assess tonic pain. Our results indicate that both phases, that is, early evoked hypersensitivity (i.e. 5-7 weeks post-Streptozotocin) as well as late stage hypoalgesia (i.e. 17-20 weeks post-Streptozotocin) are accompanied by significant tonic pain in mice with diabetic peripheral neuropathy. We also report on the temporal relation between on-going pain and neuropathological changes in the dorsal root ganglia of mice with diabetic peripheral neuropathy up to 6 months post-Streptozotocin. Neither early hypersensitivity nor late hypoalgesia were associated with markers of cellular stress in the dorsal root ganglia. Whereas significant neutrophil infiltration was observed in the dorsal root ganglia over both early and late stages post-Streptozotocin, T-cell infiltration in the dorsal root ganglia was prominent at late stages post-Streptozotocin. Thus, longitudinal analyses reveal that similar to patients with chronic diabetic peripheral neuropathy, mice show tonic pain despite sensory loss after several months in the Streptozotocin model, which is accompanied by neuroimmune interactions in the dorsal root ganglia.


Assuntos
Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/imunologia , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Hiperalgesia/complicações , Neuralgia/complicações , Fator 3 Ativador da Transcrição/metabolismo , Animais , Complexo CD3/metabolismo , Neuropatias Diabéticas/patologia , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/patologia
14.
PLoS Biol ; 13(10): e1002286, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496209

RESUMO

The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.


Assuntos
Citoesqueleto de Actina/metabolismo , Lobo Frontal/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Lobo Parietal/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Células COS , Canabinoides/farmacologia , Células Cultivadas , Chlorocebus aethiops , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Embrião de Mamíferos/citologia , Lobo Frontal/citologia , Lobo Frontal/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Lobo Parietal/citologia , Lobo Parietal/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
16.
Nat Rev Neurosci ; 18(2): 113, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28704354
18.
Proc Natl Acad Sci U S A ; 111(6): 2194-9, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469813

RESUMO

Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/genética , Animais , Camundongos , Camundongos Transgênicos
19.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27306409

RESUMO

BACKGROUND: There is an urgent need to develop and incorporate novel behavioral tests in classically used preclinical pain models. Most rodent studies are based upon stimulus-evoked hindpaw measurements even though chronic pain is usually a day and night experience. Chronic pain is indeed a debilitating condition that influences the sociability and the ability for voluntary tasks, but the relevant behavioral readouts for these aspects are mostly under-represented in the literature. Moreover, we lack standardization in most behavioral paradigms to guarantee reproducibility and ensure adequate discussion between different studies. This concerns not only the combination, application, and duration of particular behavioral tasks but also the effects of different housing conditions implicating social isolation. RESULTS: Our aim was to thoroughly characterize the classically used spared nerve injury model for 12 weeks following surgery. We used a portfolio of classical stimulus-evoked response measurements, detailed gait analysis with two different measuring systems (Dynamic weight bearing (DWB) system and CatWalk), as well as observer-independent voluntary wheel running and home cage monitoring (Laboras system). Additionally, we analyzed the effects of social isolation in all behavioral tasks. We found that evoked hypersensitivity temporally matched changes in static gait parameters, whereas some dynamic gait parameters were changed in a time-dependent manner. Interestingly, voluntary wheel running behavior was not affected in spared nerve injury mice but by social isolation. Besides a reduced climbing activity, spared nerve injury mice did not showed tremendous alterations in the home cage activity. CONCLUSION: This is the first longitudinal study providing detailed insights into various voluntary behavioral parameters related to pain and highlights the importance of social environment on spontaneous non-evoked behaviors in a mouse model of chronic neuropathy. Our results provide fundamental considerations for future experimental planning and discussion of pain-related behavioral changes.


Assuntos
Comportamento Animal , Abrigo para Animais , Neuralgia/fisiopatologia , Animais , Peso Corporal , Marcha , Masculino , Camundongos Endogâmicos C57BL , Nociceptividade , Condicionamento Físico Animal , Estimulação Física , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
20.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27030713

RESUMO

BACKGROUND: Stroke patients often suffer from a central neuropathic pain syndrome called central post-stroke pain. This syndrome is characterized by evoked pain hypersensitivity as well as spontaneous, on-going pain in the body area affected by the stroke. Clinical evidence strongly suggests a dysfunction in central pain pathways as an important pathophysiological factor in the development of central post-stroke pain, but the exact underlying mechanisms remain poorly understood. To elucidate the underlying pathophysiology of central post-stroke pain, we generated a mouse model that is based on a unilateral stereotactic lesion of the thalamic ventral posterolateral nucleus, which typically causes central post-stroke pain in humans. RESULTS: Behavioral analysis showed that the sensory changes in our model are comparable to the sensory abnormalities observed in patients suffering from central post-stroke pain. Surprisingly, pharmacological inhibition of spinal and peripheral key components of the pain system had no effect on the induction or maintenance of the evoked hypersensitivity observed in our model. In contrast, microinjection of lidocaine into the thalamic lesion completely reversed injury-induced hypersensitivity. CONCLUSIONS: These results suggest that the evoked hypersensitivity observed in central post-stroke pain is causally linked to on-going neuronal activity in the lateral thalamus.


Assuntos
Dor/etiologia , Dor/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Animais , Colagenases/administração & dosagem , Modelos Animais de Doenças , Hiperalgesia/complicações , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Ácido Caínico/administração & dosagem , Lidocaína/administração & dosagem , Camundongos Endogâmicos C57BL , Microinjeções , Fibras Nervosas Amielínicas/patologia , Sensação , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Canais de Cátion TRPV/metabolismo , Tálamo/patologia , Tálamo/fisiopatologia , Núcleos Ventrais do Tálamo/patologia , Núcleos Ventrais do Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa