Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7991): 415-424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092908

RESUMO

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Assuntos
Evolução Biológica , Neurônios , Retina , Vertebrados , Visão Ocular , Animais , Humanos , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/classificação , Análise da Expressão Gênica de Célula Única , Vertebrados/fisiologia , Visão Ocular/fisiologia , Especificidade da Espécie , Células Amácrinas/classificação , Células Fotorreceptoras/classificação , Células Ependimogliais/classificação , Células Bipolares da Retina/classificação , Percepção Visual
2.
J Cell Physiol ; 233(2): 1434-1445, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28542832

RESUMO

Hibernation is a seasonally adaptive strategy that allows hibernators to live through extremely cold conditions. Despite the profound reduction of blood flow to the retinas, hibernation causes no lasting retinal injury. Instead, hibernators show an increased tolerance to ischemic insults during the hibernation period. To understand the molecular changes of the retinas in response to hibernation, we applied an integrative transcriptome and metabolome analysis to explore changes in gene expression and metabolites of 13-lined ground squirrel retinas during hibernation. Metabolomic analysis showed a global decrease of ATP synthesis in hibernating retinas. Decreased glucose and galactose, increased beta-oxidation of carnitine and decreased storage of some amino acids in hibernating retinas indicated a shift of fuel use from carbohydrates to lipids and alternative usage of amino acids. Transcriptomic analysis revealed that the down-regulated genes were enriched in DNA-templated transcription and immune-related functions, while the up-regulated genes were enriched in mitochondrial inner membrane and DNA packaging-related functions. We further showed that a subset of genes underwent active alternative splicing events in response to hibernation. Finally, integrative analysis of the transcriptome and metabolome confirmed the shift of fuel use in the hibernating retina by the regulation of catabolism of amino acids and lipids. Through transcriptomic and metabolomic data, our analysis revealed the altered state of mitochondrial oxidative phosphorylation and the shift of energy source in the hibernating retina, advancing our understanding of the molecular mechanisms employed by hibernators. The data will also serve as a useful resource for the ocular and hibernation research communities.


Assuntos
Metabolismo Energético , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica/métodos , Hibernação , Metabolômica/métodos , Retina/metabolismo , Sciuridae/genética , Sciuridae/metabolismo , Transcriptoma , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Processamento Alternativo , Aminoácidos/metabolismo , Animais , Cromatografia Líquida , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/imunologia , Sciuridae/imunologia , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
3.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745553

RESUMO

During development, retinal progenitors navigate a complex landscape of fate decisions to generate the major cell classes necessary for proper vision. Transcriptional regulation is critical to generate diversity within these major cell classes. Here, we aim to provide the resources and techniques required to identify transcription factors necessary to generate and maintain diversity in photoreceptor subtypes, which are critical for vision. First, we generate a key resource: a high-quality and deep transcriptomic profile of each photoreceptor subtype in adult zebrafish. We make this resource openly accessible, easy to explore, and have integrated it with other currently available photoreceptor transcriptomic datasets. Second, using our transcriptomic profiles, we derive an in-depth map of expression of transcription factors in photoreceptors. Third, we use efficient CRISPR-Cas9 based mutagenesis to screen for null phenotypes in F0 larvae (F0 screening) as a fast, efficient, and versatile technique to assess the involvement of candidate transcription factors in the generation of photoreceptor subtypes. We first show that known phenotypes can be easily replicated using this method: loss of S cones in foxq2 mutants and loss of rods in nr2e3 mutants. We then identify novel functions for the transcription factor Tbx2, demonstrating that it plays distinct roles in controlling the generation of all photoreceptor subtypes within the retina. Our study provides a roadmap to discover additional factors involved in this process. Additionally, we explore four transcription factors of unknown function (Skor1a, Sall1a, Lrrfip1a, and Xbp1), and find no evidence for their involvement in the generation of photoreceptor subtypes. This dataset and screening method will be a valuable way to explore the genes involved in many other essential aspects of photoreceptor biology.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Diferenciação Celular/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36909547

RESUMO

Specific wiring is essential for sensory systems to precisely relay information to higher brain regions. The retina, an approachable part of the brain, is an ideal model for studying neural circuits due to its well-organized structure. In the retina, S-cone photoreceptors sense and relay short-wavelength (e.g., blue) light signals for encoding color information and other environmental cues. S-cones usually account for less than 10% of cones and are precisely connected to S-cone bipolar cells (SCBCs). This connection is ancient and highly conserved across species, indicating essential functions. How this wiring specificity is formed and maintained, however, is not understood. To unveil the molecular mechanisms underlying this highly specific connection, we sequenced the transcriptomes of thirteen-lined ground squirrel (TLGS) photoreceptors. We chose TLGS for their cone-rich retina and the absence of cones that co-express multiple opsin proteins, as compared to mice. We used a targeted SMART-seq approach to obtain high-resolution transcriptomes from S- and M-cone photoreceptors and identified a cell-adhesion molecule, Nrxn3, as a potential candidate mediating the S-cone to SCBC connection. Given the limitations of genetic manipulation in TLGS, we utilized mouse models to study the function of Nrxn3 in S-cones. In 'true' S-cones (S-opsin+/M-opsin-) that lack Nrxn3 expression, the number of connections with SCBCs was drastically reduced, indicating a critical role of Nrxn3 for this synapse. While neurexins are well known for their diverse roles in regulating various synapses, this study is the first to document its crucial role in mediating or maintaining a specific synapse in the central nervous system. In addition, the differentially expressed genes identified here provide a valuable resource for further investigating cone subtype-specific functions.

5.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066415

RESUMO

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.

6.
Elife ; 92020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32463363

RESUMO

Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true S-cones' (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which may augment synaptic input to SCBCs. Such a unique true S-cone and SCBC connecting pattern forms a basis for mouse color vision, likely reflecting evolutionary adaptation to enhance color coding for the upper visual field suitable for mice's habitat and behavior.


Many primates, including humans, can see color better than most other mammals. This difference is due to the variety of light-detecting proteins ­ called opsins ­ that are produced in the eye by cells known as cones. While humans have three, mice only have two different opsins, known as S and M, which detect blue/UV and green light, respectively. Mouse cones produce either S-opsins, M-opsins or both. Fewer than 10 percent of cone cells in mice produce just the S-opsin, and these cells are essential for color vision. Mice are commonly used in scientific research, and so their vision has been well studied. However, previous research has produced conflicting results. Some studies report that cone cells that contain only S-opsin are evenly spread out across the retina. Other evidence suggests that color vision in mice exists only for the upper field of their vision, in other words, that mice can only distinguish colors that appeared above them. Nadal-Nicolás et al. set out to understand how to reconcile these contrasting findings. Molecular tools were used to detect S- and M-opsin in the retina of mice and revealed large differences between the lower part, known as the ventral retina, and the upper part, known as the dorsal retina. The ventral retina detects light coming from above the animal, and about a third of cone cells in this region produced exclusively S-opsin, compared to only 1 percent of cones in the dorsal retina. These S-opsin cone cells in the ventral retina group into clusters, where they connect with a special type of nerve cells that transmit this signal. To better understand these findings, Nadal-Nicolás et al. also studied albino mice. Although albino mice have a different distribution of S-opsin protein in the retina, the cone cells producing only S-opsin are similarly clustered in the ventral retina. This suggests that the concentration of S-opsin cone cells in the ventral retina is an important feature in mouse sight. This new finding corrects the misconception that S-opsin-only cone cells are evenly spread throughout the retina and supports the previous evidence that mouse color vision is greatest in the upper part of their field of vision. Nadal-Nicolás et al. suggest this arrangement could help the mice to detect predators that may attack them from above during the daytime. Together, these new findings could help to improve the design of future studies involving vision in mice and potentially other similar species.


Assuntos
Visão de Cores , Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Opsinas dos Cones/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Campos Visuais
7.
PLoS One ; 8(11): e78058, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260105

RESUMO

Measurement of the optomotor response is a common way to determine thresholds of the visual system in animals. Particularly in mice, it is frequently used to characterize the visual performance of different genetically modified strains or to test the effect of various drugs on visual performance. Several methods have been developed to facilitate the presentation of stimuli using computer screens or projectors. Common methods are either based on the measurement of eye movement during optokinetic reflex behavior or rely on the measurement of head and/or body-movements during optomotor responses. Eye-movements can easily and objectively be quantified, but their measurement requires invasive fixation of the animals. Head movements can be observed in freely moving animals, but until now depended on the judgment of a human observer who reported the counted tracking movements of the animal during an experiment. In this study we present a novel measurement and stimulation system based on open source building plans and software. This system presents appropriate 360° stimuli while simultaneously video-tracking the animal's head-movements without fixation. The on-line determined head gaze is used to adjust the stimulus to the head position, as well as to automatically calculate visual acuity. Exemplary, we show that automatically measured visual response curves of mice match the results obtained by a human observer very well. The spatial acuity thresholds yielded by the automatic analysis are also consistent with the human observer approach and with published results. Hence, OMR-arena provides an affordable, convenient and objective way to measure mouse visual performance.


Assuntos
Movimentos Oculares/fisiologia , Atividade Motora/fisiologia , Estimulação Luminosa , Software , Percepção Visual/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Estimulação Luminosa/instrumentação , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa