Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(16): e2112482119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412895

RESUMO

MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITD­dependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Tirosina Quinase 3 Semelhante a fms , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , Mutação , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
2.
Blood ; 139(26): 3752-3770, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35439288

RESUMO

Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.


Assuntos
Leucemia Mieloide Aguda , Ribonucleotídeo Redutases , Replicação do DNA , Homeostase , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Polifosfatos , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
3.
Phys Biol ; 19(3)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35078159

RESUMO

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?


Assuntos
Epigênese Genética , Neoplasias , Epigenômica , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral
4.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743010

RESUMO

Venetoclax (VEN) in combination with hypomethylating agents induces disease remission in patients with de novo AML, however, most patients eventually relapse. AML relapse is attributed to the persistence of drug-resistant leukemia stem cells (LSCs). LSCs need to maintain low intracellular levels of reactive oxygen species (ROS). Arsenic trioxide (ATO) induces apoptosis via upregulation of ROS-induced stress to DNA-repair mechanisms. Elevated ROS levels can trigger the Nrf2 antioxidant pathway to counteract the effects of high ROS levels. We hypothesized that ATO and VEN synergize in targeting LSCs through ROS induction by ATO and the known inhibitory effect of VEN on the Nrf2 antioxidant pathway. Using cell fractionation, immunoprecipitation, RNA-knockdown, and fluorescence assays we found that ATO activated nuclear translocation of Nrf2 and increased transcription of antioxidant enzymes, thereby attenuating the induction of ROS by ATO. VEN disrupted ATO-induced Nrf2 translocation and augmented ATO-induced ROS, thus enhancing apoptosis in LSCs. Using metabolic assays and electron microscopy, we found that the ATO+VEN combination decreased mitochondrial membrane potential, mitochondria size, fatty acid oxidation and oxidative phosphorylation, all of which enhanced apoptosis of LSCs derived from both VEN-sensitive and VEN-resistant AML primary cells. Our results indicate that ATO and VEN cooperate in inducing apoptosis of LSCs through potentiation of ROS induction, suggesting ATO+VEN is a promising regimen for treatment of VEN-sensitive and -resistant AML.


Assuntos
Antineoplásicos , Arsenicais , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Apoptose , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Arsenicais/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Recidiva , Sulfonamidas
5.
Blood ; 134(6): 548-560, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31217189

RESUMO

The presence of FMS-like receptor tyrosine kinase-3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukemia (AML) is associated with poor clinical outcome. FLT3 tyrosine kinase inhibitors (TKIs), although effective in kinase ablation, do not eliminate primitive FLT3-ITD+ leukemia cells, which are potential sources of relapse. Thus, understanding the mechanisms underlying FLT3-ITD+ AML cell persistence is essential to devise future AML therapies. Here, we show that expression of protein arginine methyltransferase 1 (PRMT1), the primary type I arginine methyltransferase, is increased significantly in AML cells relative to normal hematopoietic cells. Genome-wide analysis, coimmunoprecipitation assay, and PRMT1-knockout mouse studies indicate that PRMT1 preferentially cooperates with FLT3-ITD, contributing to AML maintenance. Genetic or pharmacological inhibition of PRMT1 markedly blocked FLT3-ITD+ AML cell maintenance. Mechanistically, PRMT1 catalyzed FLT3-ITD protein methylation at arginine 972/973, and PRMT1 promoted leukemia cell growth in an FLT3 methylation-dependent manner. Moreover, the effects of FLT3-ITD methylation in AML cells were partially due to cross talk with FLT3-ITD phosphorylation at tyrosine 969. Importantly, FLT3 methylation persisted in FLT3-ITD+ AML cells following kinase inhibition, indicating that methylation occurs independently of kinase activity. Finally, in patient-derived xenograft and murine AML models, combined administration of AC220 with a type I PRMT inhibitor (MS023) enhanced elimination of FLT3-ITD+ AML cells relative to AC220 treatment alone. Our study demonstrates that PRMT1-mediated FLT3 methylation promotes AML maintenance and suggests that combining PRMT1 inhibition with FLT3 TKI treatment could be a promising approach to eliminate FLT3-ITD+ AML cells.


Assuntos
Arginina/metabolismo , Duplicação Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Biomarcadores Tumorais , Catálise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Metilação , Camundongos , Camundongos Knockout , Modelos Moleculares , Prognóstico , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química
6.
J Cell Physiol ; 235(10): 7567-7579, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32159236

RESUMO

Transcription initiation factor 90 (TIF-90), an alternatively spliced variant of TIF-IA, differs by a 90 base pair deletion of exon 6. TIF-90 has been shown to regulate ribosomal RNA (rRNA) synthesis by interacting with polymerase I (Pol I) during the initiation of ribosomal DNA (rDNA) transcription in the nucleolus. Recently, we showed that TIF-90-mediated rRNA synthesis can play an important role in driving tumorigenesis in human colon cancer cells. Here we show that TIF-90 binds GTP at threonine 310, and that GTP binding is required for TIF-90-enhanced rRNA synthesis. Overexpression of activated AKT induces TIF-90 T310, but not a GTP-binding site (TIF-90 T310N) mutant, to translocate into the nucleolus and increase rRNA synthesis. Complementing this result, treatment with mycophenolic acid (MPA), an inhibitor of GTP production, dissociates TIF-90 from Pol I and hence abolishes AKT-increased rRNA synthesis by way of TIF-90 activation. Thus, TIF-90 requires bound GTP to fulfill its function as an enhancer of rRNA synthesis. Both TIF variants are highly expressed in colon cancer cells, and depletion of TIF-IA expression in these cells results in significant sensitivity to MPA-inhibited rRNA synthesis and reduced cell proliferation. Finally, a combination of MPA and AZD8055 (an inhibitor of both AKT and mTOR) synergistically inhibits rRNA synthesis, in vivo tumor growth, and other oncogenic activities of primary human colon cancer cells, suggesting a potential avenue for the development of therapeutic treatments by targeting the regulation of rRNA synthesis by TIF proteins.


Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Guanosina Trifosfato/genética , RNA Ribossômico/genética , Ribossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Ribossômico/genética , Células HCT116 , Humanos , RNA Polimerase I/genética , Transdução de Sinais/genética
7.
Blood ; 130(24): 2619-2630, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29084772

RESUMO

The maintenance and functional integrity of long-term hematopoietic stem cells (LT-HSCs) is critical for lifelong hematopoietic regeneration. Histone deacetylases (HDACs) modulate acetylation of lysine residues, a protein modification important for regulation of numerous biological processes. Here, we show that Hdac8 is most highly expressed in the phenotypic LT-HSC population within the adult hematopoietic hierarchy. Using an Hdac8-floxed allele and a dual-fluorescence Cre reporter allele, largely normal hematopoietic differentiation capacity of Hdac8-deficient cells was observed. However, the frequency of phenotypic LT-HSC population was significantly higher shortly after Hdac8 deletion, and the expansion had shifted to the phenotypic multipotent progenitor population by 1 year. We show that Hdac8-deficient hematopoietic progenitors are compromised in colony-forming cell serial replating in vitro and long-term serial repopulating activity in vivo. Mechanistically, we demonstrate that the HDAC8 protein interacts with the p53 protein and modulates p53 activity via deacetylation. Hdac8-deficient LT-HSCs displayed hyperactivation of p53 and increased apoptosis under genotoxic and hematopoietic stress. Genetic inactivation of p53 reversed the increased apoptosis and elevated expression of proapoptotic targets Noxa and Puma seen in Hdac8-deleted LT-HSCs. Dramatically compromised hematopoietic recovery and increased lethality were seen in Hdac8-deficient mice challenged with serial 5-fluorouracil treatment. This hypersensitivity to hematopoietic ablation was completely rescued by inactivation of p53. Altogether, these results indicate that HDAC8 functions to modulate p53 activity to ensure LT-HSC maintenance and cell survival under stress.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Histona Desacetilases/genética , Proteína Supressora de Tumor p53/genética , Acetilação , Animais , Antimetabólitos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Histona Desacetilases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estresse Fisiológico/genética , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo
8.
Blood ; 128(11): 1503-15, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27443289

RESUMO

Acute myeloid leukemia (AML) arises through multistep clonal evolution characterized by stepwise accumulation of successive alterations affecting the homeostasis of differentiation, proliferation, self-renewal, and survival programs. The persistence and dynamic clonal evolution of leukemia-initiating cells and preleukemic stem cells during disease progression and treatment are thought to contribute to disease relapse and poor outcome. Inv(16)(p13q22) or t(16;16)(p13.1;q22), one of the most common cytogenetic abnormalities in AML, leads to expression of a fusion protein CBFß-SMMHC (CM) known to disrupt myeloid and lymphoid differentiation. Anemia is often observed in AML but is presumed to be a secondary consequence of leukemic clonal expansion. Here, we show that CM expression induces marked deficiencies in erythroid lineage differentiation and early preleukemic expansion of a phenotypic pre-megakaryocyte/erythrocyte (Pre-Meg/E) progenitor population. Using dual-fluorescence reporter mice in lineage tracking and repopulation assays, we show that CM expression cell autonomously causes expansion of abnormal Pre-Meg/E progenitors with compromised erythroid specification and differentiation capacity. The preleukemic Pre-Meg/Es display dysregulated erythroid and megakaryocytic fate-determining factors including increased Spi-1, Gata2, and Gfi1b and reduced Zfpm1, Pf4, Vwf, and Mpl expression. Furthermore, these abnormal preleukemic Pre-Meg/Es have enhanced stress resistance and are prone to leukemia initiation upon acquiring cooperative signals. This study reveals that the leukemogenic CM fusion protein disrupts adult erythropoiesis and creates stress-resistant preleukemic Pre-Meg/E progenitors predisposed to malignant transformation. Abnormality in Meg/E or erythroid progenitors could potentially be considered an early predictive risk factor for leukemia evolution.


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica/patologia , Leucemia Experimental/patologia , Células Progenitoras de Megacariócitos e Eritrócitos/patologia , Proteínas de Fusão Oncogênica/metabolismo , Animais , Western Blotting , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Feminino , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Masculino , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Fusão Oncogênica/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Blood ; 127(13): 1687-700, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26796361

RESUMO

Targeting oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) in acute myeloid leukemia (AML) can reduce blast survival and tumor immune evasion. Decoy oligodeoxynucleotides (dODNs), which comprise STAT3-specific DNA sequences are competitive inhibition of STAT3 transcriptional activity. To deliver STAT3dODN specifically to myeloid cells, we linked STAT3dODN to the Toll-like receptor 9 (TLR9) ligand, cytosine guanine dinucleotide (CpG). The CpG-STAT3dODN conjugates are quickly internalized by human and mouse TLR9(+)immune cells (dendritic cells, B cells) and the majority of patients' derived AML blasts, including leukemia stem/progenitor cells. Following uptake, CpG-STAT3dODNs are released from endosomes, and bind and sequester cytoplasmic STAT3, thereby inhibiting downstream gene expression in target cells. STAT3 inhibition in patients' AML cells limits their immunosuppressive potential by reduced arginase expression, thereby partly restoring T-cell proliferation. Partly chemically modified CpG-STAT3dODNs have >60 hours serum half-life which allows for IV administration to leukemia-bearing mice (50% effective dose ∼ 2.5 mg/kg). Repeated administration of CpG-STAT3dODN resulted in regression of human MV4-11 AML in mice. The antitumor efficacy of this strategy is further enhanced in immunocompetent mice by combining direct leukemia-specific cytotoxicity with immunogenic effects of STAT3 blocking/TLR9 triggering. CpG-STAT3dODN effectively reducedCbfb/MYH11/MplAML burden in various organs and eliminated leukemia stem/progenitor cells, mainly through CD8/CD4 T-cell-mediated immune responses. In contrast, small-molecule Janus kinase 2/STAT3 inhibitor failed to reproduce therapeutic effects of cell-selective CpG-STAT3dODN strategy. These results demonstrate therapeutic potential of CpG-STAT3dODN inhibitors with broad implications for treatment of AML and potentially other hematologic malignancies.


Assuntos
Ilhas de CpG , Genes cdc/efeitos dos fármacos , Leucemia Mieloide Aguda , Oligodesoxirribonucleotídeos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Evasão Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Estabilidade de Medicamentos , Genes cdc/imunologia , Terapia Genética/métodos , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/uso terapêutico , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Soro/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
Blood ; 123(1): 15-25, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24169824

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is an oncogene and immune checkpoint commonly activated in cancer cells and in tumor-associated immune cells. We previously developed an immunostimulatory strategy based on targeted Stat3 silencing in Toll-like receptor 9 (TLR9)-positive hematopoietic cells using CpG-small interfering RNA (siRNA) conjugates. Here, we assessed the therapeutic effect of systemic STAT3 blocking/TLR9 triggering in disseminated acute myeloid leukemia (AML). We used mouse Cbfb-MYH11/Mpl-induced leukemia model, which mimics human inv(16) AML. Our results demonstrate that intravenously delivered CpG-Stat3 siRNA, but not control oligonucleotides, can eradicate established AML and impair leukemia-initiating potential. These antitumor effects require host's effector T cells but not TLR9-positive antigen-presenting cells. Instead, CpG-Stat3 siRNA has direct immunogenic effect on AML cells in vivo upregulating major histocompatibility complex class-II, costimulatory and proinflammatory mediators, such as interleukin-12, while downregulating coinhibitory PD-L1 molecule. Systemic injections of CpG-Stat3 siRNA generate potent tumor antigen-specific immune responses, increase the ratio of tumor-infiltrating CD8(+) T cells to regulatory T cells in various organs, and result in CD8(+) T-cell-dependent regression of leukemia. Our findings underscore the potential of using targeted STAT3 inhibition/TLR9 triggering to break tumor tolerance and induce immunity against AML and potentially other TLR9-positive blood cancers.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/imunologia , Leucemia/metabolismo , Fator de Transcrição STAT3/genética , Receptor Toll-Like 9/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Ilhas de CpG , Inativação Gênica , Tolerância Imunológica , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Blood ; 122(11): 1900-13, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23896410

RESUMO

The SRC family kinases (SFKs) and the receptor tyrosine kinase c-Kit are activated in human acute myeloid leukemia (AML) cells. We show here that the SFKs LYN, HCK, or FGR are overexpressed and activated in AML progenitor cells. Treatment with the SFK and c-KIT inhibitor dasatinib selectively inhibits human AML stem/progenitor cell growth in vitro. Importantly, dasatinib markedly increases the elimination of AML stem cells capable of engrafting immunodeficient mice by chemotherapeutic agents. In vivo dasatinib treatment enhances chemotherapy-induced targeting of primary murine AML stem cells capable of regenerating leukemia in secondary recipients. Our studies suggest that enhanced targeting of AML cells by the combination of dasatinib with daunorubicin may be related to inhibition of AKT-mediated human mouse double minute 2 homolog phosphorylation, resulting in enhanced p53 activity in AML cells. Combined treatment using dasatinib and chemotherapy provides a novel approach to increasing p53 activity and enhancing targeting of AML stem cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Dasatinibe , Daunorrubicina/administração & dosagem , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Interferência de RNA , Tiazóis/administração & dosagem , Tiazóis/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética , Quinases da Família src/metabolismo
12.
Blood ; 120(4): 868-79, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22613795

RESUMO

Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Trombopoetina/metabolismo , Trombopoetina/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Ciclo Celular , Proliferação de Células , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Técnicas Imunoenzimáticas , Leucemia Mieloide Aguda/genética , Camundongos , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Proteína 1 Parceira de Translocação de RUNX1 , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Trombopoetina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Taxa de Sobrevida , Trombopoetina/genética , Translocação Genética , Células Tumorais Cultivadas
13.
Stem Cells ; 31(3): 560-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280653

RESUMO

Hematopoietic stem cells (HSCs) reside in a specialized bone marrow (BM) microenvironment that supports the maintenance and functional integrity of long-term (LT)-HSCs throughout postnatal life. The objective of this work is to study the role of activated leukocyte cell adhesion molecule (Alcam) in HSC differentiation and self-renewal using an Alcam-null (Alcam(-/-) ) mouse model. We show here that Alcam is differentially regulated in adult hematopoiesis and is highly expressed in LT-HSCs where its level progressively increases with age. Young adult Alcam(-/-) mice had normal homeostatic hematopoiesis and normal numbers of phenotypic HSCs. However, Alcam(-/-) HSCs had reduced long-term replating capacity in vitro and reduced long-term engraftment potential upon transplantation. We show that Alcam(-/-) BM contain a markedly lower frequency of long-term repopulating cells than wild type. Further, the long-term repopulating potential and engraftment efficiency of Alcam(-/-) LT-HSCs was greatly compromised despite a progressive increase in phenotypic LT-HSC numbers during long-term serial transplantation. In addition, an age-associated increase in phenotypic LT-HSC cellularity was observed in Alcam(-/-) mice. This increase was predominately within the CD150(hi) fraction and was accompanied by significantly reduced leukocyte output. Consistent with an aging-like phenotype, older Alcam(-/-) LT-HSCs display myeloid-biased repopulation activity upon transplantation. Finally, Alcam(-/-) LT-HSCs display premature elevation of age-associated gene expression, including Selp, Clu, Cdc42, and Foxo3. Together, this study indicates that Alcam regulates functional integrity and self-renewal of LT-HSCs.


Assuntos
Molécula de Adesão de Leucócito Ativado/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Molécula de Adesão de Leucócito Ativado/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Cancer Cell ; 9(1): 57-68, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16413472

RESUMO

The acute myeloid leukemia (AML)-associated CBF beta-SMMHC fusion protein impairs hematopoietic differentiation and predisposes to leukemic transformation. The mechanism of leukemia progression, however, is poorly understood. In this study, we report a conditional Cbfb-MYH11 knockin mouse model that develops AML with a median latency of 5 months. Cbf beta-SMMHC expression reduced the multilineage repopulation capacity of hematopoietic stem cells (HSCs) while maintaining their numbers under competitive conditions. The fusion protein induced abnormal myeloid progenitors (AMPs) with limited proliferative potential but leukemic predisposition similar to that of HSCs in transplanted mice. In addition, Cbf beta-SMMHC blocked megakaryocytic maturation at the CFU-Meg to megakaryocyte transition. These data show that a leukemia oncoprotein can inhibit differentiation and proliferation while not affecting the maintenance of long-term HSCs.


Assuntos
Leucemia Mieloide/patologia , Células Progenitoras Mieloides/patologia , Proteínas de Fusão Oncogênica/metabolismo , Pré-Leucemia/patologia , Doença Aguda , Animais , Linfócitos B/patologia , Plaquetas/patologia , Proliferação de Células , Hematopoese , Leucemia Mieloide/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Progenitoras Mieloides/metabolismo , Proteínas de Fusão Oncogênica/genética , Pré-Leucemia/metabolismo
15.
NPJ Syst Biol Appl ; 10(1): 32, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527998

RESUMO

Acute myeloid leukemia (AML) is prevalent in both adult and pediatric patients. Despite advances in patient categorization, the heterogeneity of AML remains a challenge. Recent studies have explored the use of gene expression data to enhance AML diagnosis and prognosis, however, alternative approaches rooted in physics and chemistry may provide another level of insight into AML transformation. Utilizing publicly available databases, we analyze 884 human and mouse blood and bone marrow samples. We employ a personalized medicine strategy, combining state-transition theory and surprisal analysis, to assess the RNA transcriptome of individual patients. The transcriptome is transformed into physical parameters that represent each sample's steady state and the free energy change (FEC) from that steady state, which is the state with the lowest free energy.We found the transcriptome steady state was invariant across normal and AML samples. FEC, representing active molecular processes, varied significantly between samples and was used to create patient-specific barcodes to characterize the biology of the disease. We discovered that AML samples that were in a transition state had the highest FEC. This disease state may be characterized as the most unstable and hence the most therapeutically targetable since a change in free energy is a thermodynamic requirement for disease progression. We also found that distinct sets of ongoing processes may be at the root of otherwise similar clinical phenotypes, implying that our integrated analysis of transcriptome profiles may facilitate a personalized medicine approach to cure AML and restore a steady state in each patient.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Adulto , Animais , Camundongos , Humanos , Criança , Transcriptoma/genética , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/genética , Biomarcadores Tumorais/genética , Fenótipo
16.
Leukemia ; 38(4): 769-780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307941

RESUMO

Chronic myeloid leukemia (CML) is initiated and maintained by BCR::ABL which is clinically targeted using tyrosine kinase inhibitors (TKIs). TKIs can induce long-term remission but are also not curative. Thus, CML is an ideal system to test our hypothesis that transcriptome-based state-transition models accurately predict cancer evolution and treatment response. We collected time-sequential blood samples from tetracycline-off (Tet-Off) BCR::ABL-inducible transgenic mice and wild-type controls. From the transcriptome, we constructed a CML state-space and a three-well leukemogenic potential landscape. The potential's stable critical points defined observable disease states. Early states were characterized by anti-CML genes opposing leukemia; late states were characterized by pro-CML genes. Genes with expression patterns shaped similarly to the potential landscape were identified as drivers of disease transition. Re-introduction of tetracycline to silence the BCR::ABL gene returned diseased mice transcriptomes to a near healthy state, without reaching it, suggesting parts of the transition are irreversible. TKI only reverted the transcriptome to an intermediate disease state, without approaching a state of health; disease relapse occurred soon after treatment. Using only the earliest time-point as initial conditions, our state-transition models accurately predicted both disease progression and treatment response, supporting this as a potentially valuable approach to time clinical intervention, before phenotypic changes become detectable.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Transcriptoma , Camundongos , Animais , Proteínas de Fusão bcr-abl/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Tetraciclinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
17.
Nat Cancer ; 5(4): 601-624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413714

RESUMO

Current anticancer therapies cannot eliminate all cancer cells, which hijack normal arginine methylation as a means to promote their maintenance via unknown mechanisms. Here we show that targeting protein arginine N-methyltransferase 9 (PRMT9), whose activities are elevated in blasts and leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML), eliminates disease via cancer-intrinsic mechanisms and cancer-extrinsic type I interferon (IFN)-associated immunity. PRMT9 ablation in AML cells decreased the arginine methylation of regulators of RNA translation and the DNA damage response, suppressing cell survival. Notably, PRMT9 inhibition promoted DNA damage and activated cyclic GMP-AMP synthase, which underlies the type I IFN response. Genetically activating cyclic GMP-AMP synthase in AML cells blocked leukemogenesis. We also report synergy of a PRMT9 inhibitor with anti-programmed cell death protein 1 in eradicating AML. Overall, we conclude that PRMT9 functions in survival and immune evasion of both LSCs and non-LSCs; targeting PRMT9 may represent a potential anticancer strategy.


Assuntos
Arginina , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Nucleotidiltransferases , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Nucleotidiltransferases/metabolismo , Arginina/metabolismo , Metilação/efeitos dos fármacos , Animais , Camundongos , Interferon Tipo I/metabolismo , Dano ao DNA , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
18.
Ann Clin Transl Neurol ; 10(11): 2025-2042, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37646115

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS: We utilized mass spectrometry (MS)-based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state-transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS: We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state-transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION: We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Proteínas Plasmáticas de Ligação ao Retinol
19.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873185

RESUMO

Chronic myeloid leukemia (CML) is initiated and maintained by BCR::ABL which is clinically targeted using tyrosine kinase inhibitors (TKIs). TKIs can induce long-term remission but are also not curative. Thus, CML is an ideal system to test our hypothesis that transcriptome-based state-transition models accurately predict cancer evolution and treatment response. We collected time-sequential blood samples from tetracycline-off (Tet-Off) BCR::ABL-inducible transgenic mice and wild-type controls. From the transcriptome, we constructed a CML state-space and a three-well leukemogenic potential landscape. The potential's stable critical points defined observable disease states. Early states were characterized by anti-CML genes opposing leukemia; late states were characterized by pro-CML genes. Genes with expression patterns shaped similarly to the potential landscape were identified as drivers of disease transition. Re-introduction of tetracycline to silence the BCR::ABL gene returned diseased mice transcriptomes to a near healthy state, without reaching it, suggesting parts of the transition are irreversible. TKI only reverted the transcriptome to an intermediate disease state, without approaching a state of health; disease relapse occurred soon after treatment. Using only the earliest time-point as initial conditions, our state-transition models accurately predicted both disease progression and treatment response, supporting this as a potentially valuable approach to time clinical intervention even before phenotypic changes become detectable.

20.
Nat Commun ; 14(1): 5325, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658085

RESUMO

The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid ß-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide de Fase Crônica , Leucemia Mieloide , MicroRNAs , Animais , Humanos , Camundongos , Crise Blástica , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa