RESUMO
The development of targeted drug delivery systems has been a pivotal area in nanomedicine, addressing challenges like low drug loading capacity, uncontrolled release, and systemic toxicity. This study aims to develop and evaluate dual-functionalized mesoporous silica nanoparticles (MSN) for targeted delivery of celecoxib, enhancing drug loading, achieving controlled release, and reducing systemic toxicity through amine grafting and imidazolyl polyethyleneimine (PEI) gatekeepers. MSN were synthesized using the sol-gel method and functionalized with (3-aminopropyl) triethoxysilane (APTES) to create amine-grafted MSN (MSN-NH2). Celecoxib was loaded into MSN-NH2, followed by conjugation of imidazole-functionalized PEI (IP) gatekeepers synthesized via carbodiimide coupling. Characterization was conducted using Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Drug loading capacity, entrapment efficiency, and in vitro drug release at pH 5.5 and 7.4 were evaluated. Cytotoxicity was assessed using the MTT assay on RAW 264.7 macrophages. The synthesized IP was confirmed by FTIR and 1H-NMR. Amine-grafted MSN demonstrated a celecoxib loading capacity of 12.91 ± 2.02%, 2.1 times higher than non-functionalized MSN. In vitro release studies showed pH-responsive behavior with significantly higher celecoxib release from MSN-NH2-celecoxib-IP at pH 5.5 compared to pH 7.4, achieving a 33% increase in release rate within 2 h. Cytotoxicity tests indicated significantly higher cell viability for IP-treated cells compared to PEI-treated cells, confirming reduced toxicity. The dual-functionalization of MSN with amine grafting and imidazolyl PEI gatekeepers enhances celecoxib loading and provides controlled pH-responsive drug release while reducing systemic toxicity. These findings highlight the potential of this advanced drug delivery system for targeted anti-inflammatory and anticancer therapies.
Assuntos
Aminas , Celecoxib , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Nanopartículas , Polietilenoimina , Dióxido de Silício , Celecoxib/química , Celecoxib/farmacologia , Dióxido de Silício/química , Camundongos , Nanopartículas/química , Animais , Polietilenoimina/química , Células RAW 264.7 , Aminas/química , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Porosidade , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Imidazóis/química , Concentração de Íons de HidrogênioRESUMO
We have successfully conjugated mesalamine (5-aminosalicylic acid, 5-ASA) with xylan, a biopolymer isolated from pineapple stem waste, to form xylan-5-ASA conjugate. The biopolymer was used to provide colon-targeting properties for 5-ASA, a golden standard anti-inflammatory agent commonly used for ulcerative colitis treatment. A series of data from FTIR spectroscopy, UV-Vis spectrophotometry, and HPLC confirmed the xylan-5-ASA conjugate formation. To ensure successful colon targeting properties, in vitro and in vivo drug release studies after oral administration of xylan-5-ASA conjugate to Wistar rats were performed. Xylan-5-ASA conjugate was able to retain 5-ASA release in the upper gastrointestinal tract fluid simulation but rapidly released 5-ASA in the rat colon fluid simulation. In vivo release profile shows a very low peak plasma concentration, reached at 6 h after xylan-5-ASA conjugate administration. The delayed release and the lower bioavailability of 5-ASA from xylan-5-ASA conjugate administration compared to free 5-ASA administration confirmed the successful local colon delivery of 5-ASA using xylan-5-ASA conjugate. The administration of xylan-5-ASA conjugate also exhibited greater efficacy in recovering 2,4,6-trinitrobenzene sulfonic acid-induced colon ulcer compared to free 5-ASA administration. Taken together, xylan isolated from pineapple stem waste is promising to obtain colon targeting property for 5-ASA.
Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Biopolímeros/química , Colo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Mesalamina/administração & dosagem , Caules de Planta/química , Xilanos/química , Administração Oral , Ananas/química , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacocinética , Biopolímeros/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Colite Ulcerativa/metabolismo , Masculino , Mesalamina/efeitos adversos , Mesalamina/farmacocinética , Ratos , Ratos Wistar , Espectrofotometria Ultravioleta , Ácido Trinitrobenzenossulfônico/química , Xilanos/isolamento & purificação , Xilanos/farmacocinéticaRESUMO
In this study, antioxidant activities and identification of the bioactive substances in Gnetum gnemon L. (Gg) seed hard shell were evaluated. The seed of Gnetum gnemon L., an Indonesian native plant, is commonly consumed as a vegetable or further processed as cracker. Isolated substances from Gnetum gnemon seed are mainly stilbenoid derivatives which show potent antioxidant, tyrosinase inhibitor, and antimicrobial activities. Nevertheless, the antioxidant activity of its crude extract is still considered weak. In this study, an effort was made to improve antioxidant potency by fractionation using macroporous adsorptive resin (MAR). This fractionation successfully enhanced antioxidant activity of red Gg seed hard shell extract with efficient adsorption contact time within 30 min. Antioxidant activity of fractions 25-75% v/v ethanol increased three- to sevenfold as compared to crude extract and more importantly resulted in dry product which was easier for further processes. Identification of bioactive compounds in Gg seed hard shell extract with different degrees of ripeness was also performed by HPLC and confirmed the presence of Gnetin C, resveratrol, and other stilbenoid derivatives. These other stilbenoid derivatives could be the main substances contributing in antioxidant action with lower IC50 as compared to both Gnetin C and resveratrol. In summary, fractionation process using MAR HPD-600 reduced unnecessary sugar molecules from red Gg seed hard shell extract hence resulting to fraction with strong antioxidant activity.
RESUMO
Polycystic ovary syndrome (PCOS), a hormonal and metabolic disorder manifested in women of reproductive age, is still being treated using drugs with side effects. As an alternative to these drugs, isoflavone, also identified as phytoestrogen, has anti-PCOS activity. Isoflavone can help relieve PCOS symptoms by lowering the level of testosterone, which causes hyperandrogenism, thereby normalizing the menstrual cycle and restoring normal ovarian morphology. Furthermore, isoflavone influences the improvement of the metabolic profile, which changes because of PCOS, as well as the reduction of inflammatory markers and oxidative stress. However, both significant and non-significant results have been generated on the activity of isoflavones in PCOS. The present review aims to discuss the existing literature on the effect of isoflavone on PCOS symptoms based on in vivo and clinical trial studies.
RESUMO
Objectives: Dyslipidemia has currently become a major health challenge that still opens for safer and more effective modes of treatment. The plant Pandanus amaryllifolius Roxb. (pandan) has been indicated to contain active ingredients that interfere with the pathological pathway of dyslipidemia. The aim of the study was to test the effects of pandan leaves ethanol extract on lipid and proinflammatory profiles in a rat dyslipidemic model. Methods: Dyslipidemia was induced by administration of high-fat feed for 8 weeks. Treatments (vehicle, the reference drug simvastatin at 1.8 mg/kg, and extract at 200, 300 or 600 mg/kg) were given for 4 weeks following the completion of induction. Results: Significant post-treatment decreases in total cholesterol, low density lipoprotein (LDL), and triglyceride levels in groups receiving all doses of extract and simvastatin were observed. Similar results were also found in regards to proinflammatory cytokines levels. Pandan extracts significantly lowered the concentrations of IL-6, TNF-α, and NFκB p65. Characterization of metabolite contents of the extract confirmed the presence of the previously suggested active alkaloids pandamarilactonine-A and B. Conclusion: Taken together, results of the present study implied the ameliorating effects of pandan leaves ethanol extract in dyslipidemic condition which is potential for opening an avenue in combating this essential component of metabolic disorder.
RESUMO
This study aimed to characterize chitin extracted from Indonesia mangrove crab (Scylla serrata) shells, as well as to assess its in vitro cytotoxic, antioxidant, and HMG CoA reductase inhibitory potentials. In silico molecular docking, molecular dynamic, and ADMET prediction analyses were also carried out. Chitin was extracted from mangrove crab shells using deproteination and demineralization processes, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) characterization are then performed. The MTT method was further tested in a study of cell viability, while in vitro method was used to assess HMG CoA reductase inhibitory and antioxidant activities. The extracted chitin was found to have a moderate level of cytotoxic and antioxidant activities. In vitro studies showed that it has an IC50 of 36,65 ± 0,082 µg/mL as an HMG CoA reductase inhibitor, and decreased enzyme activity by 68.733 % at 100 µg/mL as a concentration. Furthermore, in the in silico study, chitin showed a strong affinity to several targets, including HMG CoA reductase, HMG synthase, LDL receptor, PPAR-alfa, and HCAR-2 with binding energies of -5.7; -5.8; -3.6; -5.6; -4.6 kcal/mol, respectively. Based on the ADMET properties, it had non-toxic molecules, which were absorbed and distributed across the blood-brain barrier. The molecular dynamics (MD) simulation also showed that it remained stable in the active sites of HMG CoA reductase receptor for 100 ns. These results indicated that chitin from Indonesian mangrove crab shells can be used to develop more potent HMG CoA reductase inhibitor with antioxidant and cytotoxic activities for effective dyslipidemia therapy.
RESUMO
BACKGROUND: Accumulating evidence has implicated the role of neuroinflammation in the pathology of autism spectrum disorder (ASD), a neurodevelopmental disorder. OBJECTIVES: To investigate the expression of prostaglandin EP3 (EP3) receptor mRNA in the brain of ASD mouse model. METHODS: Pregnant mice were injected with valproic acid (VPA) 500 mg/kg intraperitoneally at 12.5 d gestation. The offspring were tested at the age of 5-6 weeks old for their social interaction behavior. Each mouse was assessed for prostaglandin EP3 receptor expression in the prefrontal cortical, hippocampal and cerebellar areas one day after the behavioral test. RESULTS: Compared to the naive, mice born to dams treated with VPA demonstrated a significantly shorter duration of sniffing behavior, a model of social interaction. Results further showed that the expression of EP3 receptor mRNA was significantly lower in all three brain regions of the mice born to VPA-treated dams. CONCLUSION: The present study provides further evidence of the relevance of the arachidonic acid cascade as an essential part of neuroinflammation in the pathology of ASD.
Assuntos
Transtorno do Espectro Autista , MicroRNAs , Gravidez , Feminino , Camundongos , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , RNA Mensageiro/genética , Doenças Neuroinflamatórias , MicroRNAs/genética , Ácido Valproico , Encéfalo , Prostaglandinas , Modelos Animais de DoençasRESUMO
Objectives: Inflammatory pathways play a significant role in atherosclerosis that leads to acute coronary syndrome (ACS). The initial stages of atherosclerosis are often asymptomatic; when atherosclerotic plaques become unstable it leads to ACS. Therefore, early detection, diagnosis, and treatment of atherosclerosis must be sought. These circumstances underpin the need for diagnostic values of inflammatory markers, warranting their routine clinical application to develop anti-atherosclerotic therapeutic approaches. The aim of this case-control observational study was to evaluate the plasma levels of interleukin (IL)-6, IL-18, IL-1ß, and IL-10. Methods: The research was conducted at Hasan Sadikin Hospital from September to December 2021. Patients were recruited based on the typical clinical history of ACS (non-ST-elevation myocardial infarction, ST-elevation myocardial infarction, and unstable angina) and electrocardiographic and cardiac enzyme data. Healthy subjects having no more than one cardiovascular disease risk factor at admission were included. A total of 43 subjects were included in the study, of which 23 subjects were patients diagnosed with ACS and 20 were healthy controls. Results: The results showed that the mean plasma levels of IL-6 (298.6±432.9 pg/mL) in ACS patients were significantly higher than the mean concentration of IL-6 (33.7±96.6 pg/mL) in the control group (p < 0.05). Similarly, the mean plasma level of IL-18 (181.4±81.4 pg/mL) in ACS patients was significantly higher compared to the mean concentration (125.0±29.8 pg/mL) in the control group (p < 0.05), suggesting that both IL-6 and IL-18 were associated with ACS. However, there is no statistically significant difference between IL-1ß and IL-10 levels. A Pearson's correlation analysis showed that a positive correlation exists between IL-6 and IL-18. Conclusions: Both IL-6 and IL-18 are associated with ACS.
RESUMO
As one of the most popular sources for fish albumin, Channa striata has been considered as a promising substitute for human albumin. However, scientific information regarding its genomic and proteomic is very limited, making its identification rather complicated. In this study, we aimed to isolate, characterize, and examine the bioactivity of protein and peptide derivatives of C. striata albumin. Fractionation of albumin from C. striata extract was conducted using Cohn Process and the yield was evaluated. The peptides were further produced by enzymatic hydrolysis. All these proteins were studied using tricine-SDS PAGE and tested for in vitro ACE inhibition. Dry weights of the Fraction-5, where the albumin was more abundant and purer, was 3.8 ± 2.1%. Based on tricine-SDS PAGE analysis, two bands of protein, e.g., approximately 10 and 13 kDa, were detected with highest intensity found in Fraction-5, which might be albumin of C. striata. An increasing trend of ACE inhibition by the fractions was observed, ranging from 7.09 to 22.99%. The highest ACEI activity was found in peptides from alcalase hydrolysis with molecular size <3 kDa (56.65 ± 2.32%, IC50 36.93 µg/mL). This value was also statistically significant compared with the non-hydrolyzed Fraction-5 and Parental Fraction, which were 23.48 ± 3.11% (P < 0.05) and 13.02 ± 0.68% (P < 0.01), respectively. Taken together, these findings suggest a promising potential of peptide-derived C. striata albumin for natural antihypertensive agents.
RESUMO
This study aims to determine the antiobesity activity of Calophyllum soulattri leaves extract (CSLE) on high fat diet-fed rats (HFD) and to predict the molecular docking and pharmacokinetics of selected compounds of Calophyllum soulattri to fat mass and obesity-associated protein (FTO). Daily body weight, organ, carcass fat (renal and anal), body mass index, total cholesterol, and total triglyceride levels were observed after CSLE was given orally for 50 days. Furthermore, body mass index of a CSLE dose of 50 mg/kgbw, 100 mg/kgbw and orlistat (120 mg/kgbw) group are 0.68, 0.57 and 0.52, respectively. The total body weight of the CLSE dose of 100 mg/kgbw group showed the lowest percentage change, followed by a CLSE dose of 50 mg/kgbw compared to the normal and positive control group. The carcass fat index of CSLE dose of 100 mg/kgbw was not significantly different from orlistat, which was in line with its total cholesterol level and triglyceride (p < 0.05). The binding affinity of selected compounds from Calophyllum soulattri (friedelin, caloxanthone B, macluraxanthone, stigmasterol, trapezifolixanthone, dombakinaxanthone, and brasixanthone B) to FTO are -8.27, -9.74, -8.48, -9.34, -8.85, -8.68 and -9.39 kcal/mol, which are better than that of orlistat at -4.80 kcal/mol. The molecular dynamics simulation showed that the interaction between Caloxanthone B compounds and obesity receptors was relatively stable. Lipinski's rule determined the absorption percentage of all compounds above 90% with good drug-likeness. The results showed the potential of CSLE as an antiobesity drug candidate.
RESUMO
Proinflammatory biomarkers have been increasingly used in epidemiologic and intervention studies over the past decades to evaluate and identify an association of systemic inflammation with cardiovascular diseases. Although there is a strong correlation between the elevated level of inflammatory biomarkers and the pathology of various cardiovascular diseases, the mechanisms of the underlying cause are unclear. Identification of pro-inflammatory biomarkers such as cytokines, chemokines, acute phase proteins, and other soluble immune factors can help in the early diagnosis of disease. The presence of certain confounding factors such as variations in age, sex, socio-economic status, body mass index, medication and other substance use, and medical illness, as well as inconsistencies in methodological practices such as sample collection, assaying, and data cleaning and transformation, may contribute to variations in results. The purpose of the review is to identify and summarize the effect of demographic factors, epidemiological factors, medication use, and analytical and pre-analytical factors with a panel of inflammatory biomarkers CRP, IL-1b, IL-6, TNFa, and the soluble TNF receptors on the concentration of these inflammatory biomarkers in serum.
Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Fatores Imunológicos/sangue , Inflamação/sangue , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Humanos , Inflamação/diagnóstico , Inflamação/genética , Interleucina-1beta/sangue , Interleucina-6/sangue , Receptores do Fator de Necrose Tumoral/sangue , Fator de Necrose Tumoral alfa/sangueRESUMO
Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self-nanoemulsifying carrier, it slightly increased the inhibitory effect on ACE. In contrast, the effect of curcumin in reducing cholesterol based on the HMGR assay was more pronounced. Curcumin encapsulated in a nanoemulsion showed significant cholesterol-lowering activity compared to a standard drug, pravastatin. Therefore, we conclude that curcumin does not show ACE inhibitory effects, but has potential use as an alternative therapeutic compound to treat hyperlipidaemia. Curcumin encapsulated in a nanoemulsion increased not only the HMGR inhibition, but also ACE inhibition of curcumin. These effects are suggested to be the result of improved solubility in the nanoemulsion system.