Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338935

RESUMO

Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , ATPases Vacuolares Próton-Translocadoras , Humanos , Ratos , Animais , Macrolídeos/farmacologia , Frações Subcelulares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fígado/metabolismo , Cálcio/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232717

RESUMO

The species of Comamonas testosteroni is the most common human pathogen of the genus, which can be associated with acute appendicitis, infections of the bloodstream, the peritoneal cavity, cerebrospinal fluid, inflammatory bowel disease, and in general, bacteremia. According to the literature, Comamonas testosteroni has destructive activity to a wide range of toxic chemical compounds, including chlorobenzenes. The specified strains were isolated from the soil of the organochlorine waste landfill, where hexachlorobenzene (HCB) was predominant. These strains were expected to be capable of degrading HCB. Microbiological (bacterial enrichment and cultivating, bacterial biomass obtaining), molecular biology, biochemical (enzymatic activities, malondialdehyde measuring, peroxidation lipid products measuring), and statistical methods were carried out in this research. The reaction of both strains (UCM B-400 and UCM B-401) to the hexachlorobenzene presence differed in the content of diene and triene conjugates and malondialdehyde, as well as different catalase and peroxidase activity levels. In terms of primary peroxidation products, diene conjugates were lower, except conditions with 20 mg/L HCB, where these were higher up to two times, than the pure control. Malondialdehyde in strain B-400 cells decreased up to five times, in B-401, but increased up to two times, compared to the pure control. Schiff bases in strain B-400 cells were 2-3 times lower than the pure control. However, in B-401 cells Schiff bases under higher HCB dose were in the same level with the pure control. Catalase activity was 1.5 times higher in all experimental variants, compared to the pure control (in the strain B-401 cells), but in the B-400 strain, cells were 2 times lower, compared to the pure control. The response of the two strains to hexachlorobenzene was similar only in peroxidase activity terms, which was slightly higher compared to the pure control. The physiological response of Comamonas testosteroni strains to hexachlorobenzene has a typical strain reaction. The physiological response level of these strains to hexachlorobenzene confirms its tolerance, and indirectly, the ability to destroy the specified toxic compound.


Assuntos
Comamonas testosteroni , Hexaclorobenzeno , Antioxidantes , Catalase , Clorobenzenos , Humanos , Peroxidação de Lipídeos , Lipídeos , Malondialdeído , Bases de Schiff , Solo
3.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924516

RESUMO

This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.


Assuntos
Bactérias/metabolismo , Ecossistema , Microscopia/métodos , Sulfatos/metabolismo , Animais , Humanos , Metagenômica , Oxirredução
4.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203823

RESUMO

There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed.


Assuntos
Chlorobi/genética , Chlorobi/fisiologia , Chromatiaceae/genética , Chromatiaceae/fisiologia , Processos Fototróficos/genética , Anaerobiose , Chlorobi/classificação , Chromatiaceae/classificação , Filogenia , Enxofre/metabolismo
5.
Arch Microbiol ; 201(3): 389-397, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707247

RESUMO

Sulfate-reducing bacteria (SRB) belonging to the intestinal microbiota are the main producers of hydrogen sulfide and their increasing amount due to the accumulation of this compound in the bowel are involved in the initiation and maintenance of inflammatory bowel disease. The purpose of this experiment is to study the relative toxicity of hydrogen sulfide and survival of Desulfovibrio piger Vib-7 through monitoring: sulfate reduction parameters (sulfate consumption, hydrogen sulfide production, lactate consumption and acetate production) and kinetic parameters of these processes. The research is highlighting the survival of intestinal SRB, D. piger Vib-7 under the influence of different hydrogen sulfide concentrations (1-7 mM). The highest toxicity of H2S was measured in the presence of concentrations higher than 6 mM, where growing was stopped, though metabolic activities were not 100% inhibited. These findings are confirmed by cross correlation and principal component analysis that clearly supported the above mentioned results. The kinetic parameters of bacterial growth and sulfate reduction were inhibited proportionally with increasing H2S concentration. The presence of 5 mM H2S resulted in two times longer lag phase and generation time was eight times longer. Maximum rate of growth and hydrogen production was stopped under 4 mM, emphasizing the H2S toxicity concentrations to be < 4 mM, even for sulfide producing bacteria such as Desulfovibrio. The results are confirming H2S concentrations toxicity toward Desulfovibrio, especially the study novelty should be emphasized where it was found that the exact H2S limits (> 4 mM) toward this bacterial strain inhabiting humans and animals intestine.


Assuntos
Desulfovibrio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Sulfatos/metabolismo , Acetatos/metabolismo , Animais , Desulfovibrio/classificação , Microbioma Gastrointestinal/fisiologia , Humanos , Hidrogênio/metabolismo , Intestinos/microbiologia , Ácido Láctico/metabolismo , Testes de Sensibilidade Microbiana , Oxirredução , Sulfetos/metabolismo
6.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906223

RESUMO

BACKGROUND: In recent years, various substrates have been tested to increase the sustainable production of biomethane. The effect of these substrates on methanogenesis has been investigated mainly in small volume fermenters and were, for the most part, focused on studying the diversity of mesophilic microorganisms. However, studies of thermophilic communities in large scale operating mesophilic biogas plants do not yet exist. METHODS: Microbiological, biochemical, biophysical methods, and statistical analysis were used to track thermophilic communities in mesophilic anaerobic digesters. RESULTS: The diversity of the main thermophile genera in eight biogas plants located in the Czech Republic using different input substrates was investigated. In total, 19 thermophilic genera were detected after 16S rRNA gene sequencing. The highest percentage (40.8%) of thermophiles was found in the Modrice biogas plant where the input substrate was primary sludge and biological sludge (50/50, w/w %). The smallest percentage (1.87%) of thermophiles was found in the Cejc biogas plant with the input substrate being maize silage and liquid pig manure (80/20, w/w %). CONCLUSIONS: The composition of the anaerobic consortia in anaerobic digesters is an important factor for the biogas plant operator. The present study can help characterizing the impact of input feeds on the composition of microbial communities in these plants.


Assuntos
Biocombustíveis , Consórcios Microbianos/fisiologia , Esgotos/microbiologia , Anaerobiose , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
7.
Arch Microbiol ; 200(6): 945-950, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29610938

RESUMO

Anaerobic technology has a wide scope of application in different areas such as manufacturing, food industry, and agriculture. Nowadays, it is mainly used to produce electrical and thermal energy from crop processing, solid waste treatment or wastewater treatment. More intensively, trend nowadays is usage of this technology biodegradable and biomass waste processing and biomethane or hydrogen production. In this paper, the diversities of sulfate-reducing bacteria (SRB) under different imputed raw material to the bioreactors were characterized. These diversities at the beginning of sampling and after cultivation were compared. Desulfovibrio, Desulfobulbus, and Desulfomicrobium genus as dominant among sulfate reducers in the bioreactors were detected. The Desulfobulbus species were dominant among other SRB genera before cultivation, but these bacteria were detected only in three out of the seven bioreactors after cultivation dominant.


Assuntos
Biodiversidade , Reatores Biológicos/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , Oxirredução , Filogenia , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/metabolismo , Águas Residuárias/microbiologia
8.
Bioorg Med Chem ; 23(9): 2035-43, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25819330

RESUMO

In this study, a series of twenty-two ring-substituted 6-hydroxynaphthalene-2-carboxanilides was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, Mycobacterium avium complex and M. avium subsp. paratuberculosis. Derivatives substituted by trifluoromethyl, bromo, methyl and methoxy moieties in C'(3) and C'(4) positions of the anilide ring showed 2-fold higher activity against M. tuberculosis than isoniazid and 4.5-fold higher activity against M. avium subsp. paratuberculosis than rifampicin. 6-Hydroxy-N-(2-methylphenyl)naphthalene-2-carboxamide had MIC=29 µM against M. avium complex. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT assay. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using the THP-1 cells, and no significant lethal effect was observed. The structure-activity relationships are discussed.


Assuntos
Anilidas/farmacologia , Antibacterianos/farmacologia , Mycobacterium/efeitos dos fármacos , Naftóis/farmacologia , Anilidas/síntese química , Anilidas/química , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/citologia , Naftóis/síntese química , Naftóis/química , Relação Estrutura-Atividade
9.
Neuro Endocrinol Lett ; 36 Suppl 1: 106-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757109

RESUMO

OBJECTIVES: The aim of our work was to evaluate effect of selected salicylamides on cell viability of sulfate-reducing bacterium Desulfovibrio piger Vib-7 isolated from the human large intestine, as well as to assess antimicrobial activity and biological properties of these compounds. METHODS: Microbiological, biochemical, biophysical methods, and statistical processing of the results were used. RESULTS: An antimicrobial activity and biological properties of salicylamides against intestinal sulfate-reducing bacteria was studied. Primary in vitro screening of the synthesized selected salicylamides was performed against D. piger Vib-7. Adding 0.37-1.10 µmol.L(-1) (N-(4-bromophenyl)-5-chloro-2-hydroxybenzamide, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide, 5-chloro-N-(3,4-dichlorophenyl)-2-hydroxybenzamide, 5-chloro-2-hydroxy-N-(4-nitrophenyl)benzamide and 4-chloro-N-(3,4-dichlorophenyl)-2-hydroxybenzamide) caused decrease in biomass accumulation by 8-53, 64-66, 49-50, 82-90, 43-46% compared to control, respectively. The studied compounds completely inhibited the growth of D. piger Vib-7 under the effect of 30 µmol.L(-1). Moreover, addition of the compounds in the culture medium inhibited the process of dissimilation sulfate dose dependently. Treatment with salicylamides led to the bacterial growth inhibition which correlated with the level of inhibition of sulfate reduction. The data on relative survival of D. piger Vib-7 cells and cytotoxicity of salicylamides are consistent to our research in previous series of the biomass accumulation experiments. CONCLUSIONS: A significant cytotoxic activity under the influence of salicylamides was determined. These results are consistent with a data on bacterial growth and inhibition process of dissimilation sulfate. The strongest cytotoxic effect of the derivatives was observed in compounds of 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide and 5-chloro-2-hydroxy-N-(4-nitrophenyl)benzamide which showed low survival and high toxicity rates.


Assuntos
Desulfovibrio/efeitos dos fármacos , Intestino Grosso/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Salicilamidas/farmacologia , Desulfovibrio/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana
10.
Pol J Microbiol ; 64(2): 107-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26373169

RESUMO

Intestinal sulfate-reducing bacteria reduce sulfate ions to hydrogen sulfide causing inflammatory bowel diseases of humans and animals. The bacteria consume lactate as electron donor which is oxidized to acetate via pyruvate in process of the dissimilatory sulfate reduction. Pyruvate-ferredoxin oxidoreductase activity and the kinetic properties of the enzyme from intestinal sulfate-reducing bacteria Desulfovibrio piger and Desulfomicrobium sp. have never been well-characterized and have not been yet studied. In this paper we present for the first time the specific activity of pyruvate-ferredoxin oxidoreductase and the kinetic properties of the enzyme in cell-free extracts of both D. piger Vib-7 and Desulfomicrobium sp. Rod-9 intestinal bacterial strains. Microbiological, biochemical, biophysical and statistical methods were used in this work. The optimal temperature (+35°C) and pH 8.5 for enzyme reaction were determined. The spectral analysis of the puri- fied pyruvate-ferredoxin oxidoreductase from the cell-free extracts was demonstrated. Analysis of the kinetic properties of the studied enzyme was carried out. Initial (instantaneous) reaction velocity (V0), maximum amount of the product of reaction (Pmax), the reaction time (half saturation period) and maximum velocity of the pyruvate-ferredoxin oxidoreductase reaction (V ) were defined. Michaelis constants (Km) of the enzyme reaction were calculated for both intestinal bacterial strains. The studies of the kinetic enzyme properties in the intestinal sulfate-reducing bacteria strains in detail can be prospects for clarifying the etiological role of these bacteria in the development of inflammatory bowel diseases.


Assuntos
Deltaproteobacteria/enzimologia , Desulfovibrio/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Piruvato Sintase/metabolismo , Deltaproteobacteria/metabolismo , Desulfovibrio/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Cinética , Temperatura
11.
Molecules ; 19(7): 10386-409, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036151

RESUMO

In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenyl)naphthalene-1-carboxamide, N-(3-methoxy-phenyl)naphthalene-1-carboxamide, N-(3-methylphenyl)naphthalene-1-carboxamide, N-(4-methylphenyl)naphthalene-1-carboxamide and N-(3-fluorophenyl)naphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET) inhibition in isolated spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethyl)phenyl]naphthalene-1-carboxamide was 59 µmol/L. The structure-activity relationships are discussed.


Assuntos
Anilidas/química , Anilidas/farmacologia , Naftalenos/química , Anilidas/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Mycobacterium avium/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Relação Estrutura-Atividade
12.
Front Microbiol ; 15: 1417714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39056005

RESUMO

The bacterial light-dependent energy metabolism can be divided into two types: oxygenic and anoxygenic photosynthesis. Bacterial oxygenic photosynthesis is similar to plants and is characteristic for cyanobacteria. Bacterial anoxygenic photosynthesis is performed by anoxygenic phototrophs, especially green sulfur bacteria (GSB; family Chlorobiaceae) and purple sulfur bacteria (PSB; family Chromatiaceae). In anoxygenic photosynthesis, hydrogen sulfide (H2S) is used as the main electron donor, which differs from plants or cyanobacteria where water is the main source of electrons. This review mainly focuses on the microbiology of GSB, which may be found in water or soil ecosystems where H2S is abundant. GSB oxidize H2S to elemental sulfur. GSB possess special structures-chlorosomes-wherein photosynthetic pigments are located. Chlorosomes are vesicles that are surrounded by a lipid monolayer that serve as light-collecting antennas. The carbon source of GSB is carbon dioxide, which is assimilated through the reverse tricarboxylic acid cycle. Our review provides a thorough introduction to the comparative eco-physiology of GSB and discusses selected application possibilities of anoxygenic phototrophs in the fields of environmental management, bioremediation, and biotechnology.

13.
Microb Cell ; 11: 79-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486888

RESUMO

Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition - focusing on sulfate-reducing bacteria (SRB) - in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients' disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.

14.
J Hazard Mater ; 443(Pt B): 130337, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36370482

RESUMO

Biogas desulfurization based on anoxygenic photosynthetic processes represents an alternative to physicochemical technologies, decreasing the risk of O2 and N2 contamination. This work aimed at assessing the potential of Allochromatium vinosum and Chlorobium limicola for biogas desulfurization under different light intensities (10 and 25 klx) and H2S concentrations (1 %, 1.5 % and 2 %) in batch photobioreactors. In addition, the influence of rising biogas flow rates (2.9, 5.8 and 11.5 L d-1 in stage I, II and III, respectively) on the desulfurization performance in a 2.3 L photobioreactor utilizing C. limicola under continuous mode was assessed. The light intensity of 25 klx negatively influenced the growth of A. vinosum and C. limicola, resulting in decreased H2S removal capacity. An increase in H2S concentrations resulted in higher volumetric H2S removal rates in C. limicola (2.9-5.3 mg L-1 d-1) tests compared to A. vinosum (2.4-4.6 mg L-1 d-1) tests. The continuous photobioreactor completely removed H2S from biogas in stage I and II. The highest flow rate in stage III induced a deterioration in the desulfurization activity of C. limicola. Overall, the high H2S tolerance of A. vinosum and C. limicola supports their use in H2S desulfurization from biogas.


Assuntos
Chlorobi , Sulfeto de Hidrogênio , Biocombustíveis , Fotobiorreatores
15.
Heliyon ; 9(4): e15452, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123936

RESUMO

Sulfur is a vital element that all living things require, being a component of proteins and other bio-organic substances. The various kinds and varieties of microbes in nature allow for the transformation of this element. It also should be emphasized that volatile sulfur compounds are typically present in food in trace amounts. Life cannot exist without sulfur, yet it also poses a potential health risk. The colon's sulfur metabolism, which is managed by eukaryotic cells, is much better understood than the S metabolism in gastrointestinal bacteria. Numerous additional microbial processes are anticipated to have an impact on the content and availability of sulfated compounds, as well as intestinal S metabolism. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in relation to colonic health, but it is still unclear whether it is beneficial or harmful. Several lines of evidence suggest that sulfate-reducing bacteria or exogenous hydrogen sulfide may be the root cause of intestinal ailments, including inflammatory bowel diseases and colon cancer. Taurine serves a variety of biological and physiological purposes, including roles in inflammation and protection, additionally, low levels of taurine can be found in bodily fluids, and taurine is the primary sulfur component present in muscle tissue (serum and urine). The aim of this scoping review was to compile data from the most pertinent scientific works about S compounds' existence in food and their metabolic processes. The importance of S compounds in various food products and how these compounds can impact metabolic processes are both stressed in this paper.

16.
Foods ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444364

RESUMO

BACKGROUND: Following petroleum, coffee ranks as the second most extensively exchanged commodity worldwide. The definition of spent coffee ground (SCG) can be outlined as the waste generated after consuming coffee. The aims of the study are to produce edible/biodegradable packaging with the addition of spent coffee grounds (SCG) oil and to investigate how this fortification can affect chemical, textural, and solubility properties of experimentally produced films. METHODS: The produced films were based on κ-carrageenan and pouring-drying techniques in petri dishes. Two types of emulsifiers were used: Tween 20 and Tween 80. The films were analyzed by antioxidant and textural analysis, and their solubility was also tested. RESULTS: Edible/biodegradable packaging samples produced with the addition of SCG oil showed higher (p < 0.05) antioxidant capacity in comparison with control samples produced without the addition of SCG oil. The results of the research showed that the fortification of edible/biodegradable packaging with the addition of SCG oil changed significantly (p < 0.05) both chemical and physical properties of the films. CONCLUSIONS: Based on the findings obtained, it was indicated that films manufactured utilizing SCG oil possess considerable potential to serve as an effective and promising material for active food packaging purposes.

17.
Front Microbiol ; 14: 1293506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188570

RESUMO

In recent years, there has been a growing interest in extending the potential of underground gas storage (UGS) facilities to hydrogen and carbon dioxide storage. However, this transition to hydrogen storage raises concerns regarding potential microbial reactions, which could convert hydrogen into methane. It is crucial to gain a comprehensive understanding of the microbial communities within any UGS facilities designated for hydrogen storage. In this study, underground water samples and water samples from surface technologies from 7 different UGS objects located in the Vienna Basin were studied using both molecular biology methods and cultivation methods. Results from 16S rRNA sequencing revealed that the proportion of archaea in the groundwater samples ranged from 20 to 58%, with methanogens being the predominant. Some water samples collected from surface technologies contained up to 87% of methanogens. Various species of methanogens were isolated from individual wells, including Methanobacterium sp., Methanocalculus sp., Methanolobus sp. or Methanosarcina sp. We also examined water samples for the presence of sulfate-reducing bacteria known to be involved in microbially induced corrosion and identified species of the genus Desulfovibrio in the samples. In the second part of our study, we contextualized our data by comparing it to available sequencing data from terrestrial subsurface environments worldwide. This allowed us to discern patterns and correlations between different types of underground samples based on environmental conditions. Our findings reveal presence of methanogens in all analyzed groups of underground samples, which suggests the possibility of unintended microbial hydrogen-to-methane conversion and the associated financial losses. Nevertheless, the prevalence of methanogens in our results also highlights the potential of the UGS environment, which can be effectively leveraged as a bioreactor for the conversion of hydrogen into methane, particularly in the context of Power-to-Methane technology.

18.
Sci Rep ; 13(1): 13922, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626119

RESUMO

Animal and human feces typically include intestinal sulfate-reducing bacteria (SRB). Hydrogen sulfide and acetate are the end products of their dissimilatory sulfate reduction and may create a synergistic effect. Here, we report NADH and NADPH peroxidase activities from intestinal SRB Desulfomicrobium orale and Desulfovibrio piger. We sought to compare enzymatic activities under the influence of various temperature and pH regimes, as well as to carry out kinetic analyses of enzymatic reaction rates, maximum amounts of the reaction product, reaction times, maximum rates of the enzyme reactions, and Michaelis constants in cell-free extracts of intestinal SRB, D. piger Vib-7, and D. orale Rod-9, collected from exponential and stationary growth phases. The optimal temperature (35 °C) and pH (7.0) for both enzyme's activity were determined. The difference in trends of Michaelis constants (Km) during exponential and stationary phases are noticeable between D. piger Vib-7 and D. orale Rod-9; D. orale Rod-9 showed much higher Km (the exception is NADH peroxidase of D. piger Vib-7: 1.42 ± 0.11 mM) during the both monitored phases. Studies of the NADH and NADPH peroxidases-as putative antioxidant defense systems of intestinal SRB and detailed data on the kinetic properties of this enzyme, as expressed by the decomposition of hydrogen peroxide-could be important for clarifying evolutionary mechanisms of antioxidant defense systems, their etiological role in the process of dissimilatory sulfate reduction, and their possible role in the development of bowel diseases.


Assuntos
Antioxidantes , Desulfovibrio , Animais , Humanos , NAD , NADP , Extratos Celulares , Peroxidases , Mecanismos de Defesa , Sulfatos
19.
Pathogens ; 11(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456146

RESUMO

The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.

20.
J Adv Res ; 27: 71-78, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33318867

RESUMO

INTRODUCTION: Increased numbers of sulfate-reducing bacteria (SRB) are often found in the feces of people and animals with inflammatory bowel disease. The final products of their metabolism are hydrogen sulfide and acetate, which are produced during dissimilatory sulfate reduction process. OBJECTIVES: The aim of the study was to monitor processes concerning sulfate reduction microbial metabolisms, including: the main microbial genera monitoring and their hydrogen sulfide production in the intestines of healthy and not healthy individuals, phylogenetic analysis of SRB isolates, cluster analysis of SRB physiological and biochemical parameters, SRB growth kinetic parameters calculation, same as the application of the two-factor dispersion analysis for finding relationship between SRB biomass accumulation, temperature and pH. Feces samples from healthy people and patients with colitis were used for isolation of sulfate-reducing microbial communities. METHODS: Microbiological, biochemical, biophysical, molecular biology methods, and statistical processing of the results have been used for making an evaluation of gained results. RESULTS: Two dominant SRB morphotypes differed in colony size and quantitative ratio in the feces of healthy and colitis patients were observed and identified. In the feces of healthy people, 93% of SRB of morphotype I prevailed (Desulfovibrio) while morphotype II made only 7% (Desulfomicrobium); in the feces of patients with colitis, the ratio of these morphotypes was 99:1, respectively. Hydrogen sulfide concentrations are also higher in the feces of people with colitis and certain synergy effects exist among acetate produced by SRB. CONCLUSIONS: The study results brought important findings concerning colony environments with developed colitis and these findings can lead to the development of possible risk indicators of ulcerative colitis prevalence.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa