Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Exp Bot ; 74(12): 3503-3517, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36928121

RESUMO

Somatic hybrids between distant species offer a remarkable model to study genomic recombination events after mitochondrial fusion. Recently, we described highly chimeric mitogenomes in two somatic hybrids between the Solanaceae Nicotiana tabacum and Hyoscyamus niger resulting from interparental homologous recombination. To better examine the recombination map in somatic hybrid mitochondria, we developed a more sensitive bioinformatic strategy to detect recombination activity based on high-throughput sequencing without assembling the hybrid mitogenome. We generated a new intergeneric somatic hybrid between N. tabacum and Physochlaina orientalis, and re-analyzed the somatic hybrids that we previously generated. We inferred 213 homologous recombination events across repeats of 2.1 kb on average. Most of them (~80%) were asymmetrical, consistent with the break-induced replication pathway. Only rare (2.74%) non-homologous events were detected. Interestingly, independent events frequently occurred in the same regions within and across somatic hybrids, suggesting the existence of recombination hotspots in plant mitogenomes. Break-induced replication is the main pathway of interparental recombination in somatic hybrid mitochondria. Findings of this study are relevant to mitogenome editing assays and to mechanistic aspects of DNA integration following mitochondrial DNA horizontal transfer events.


Assuntos
Transferência Genética Horizontal , Mitocôndrias , Mitocôndrias/genética , Nicotiana/genética , Reparo do DNA , Recombinação Homóloga
2.
Plant J ; 89(4): 730-745, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862530

RESUMO

The evolutionarily conserved 12-subunit RNA polymerase II (Pol II) is a central catalytic component that drives RNA synthesis during the transcription cycle that consists of transcription initiation, elongation, and termination. A diverse set of general transcription factors, including a multifunctional TFIIF, govern Pol II selectivity, kinetic properties, and transcription coupling with posttranscriptional processes. Here, we show that TFIIF of Arabidopsis (Arabidopsis thaliana) resembles the metazoan complex that is composed of the TFIIFα and TFIIFß polypeptides. Arabidopsis has two TFIIFß subunits, of which TFIIFß1/MAN1 is essential and TFIIFß2/MAN2 is not. In the partial loss-of-function mutant allele man1-1, the winged helix domain of Arabidopsis TFIIFß1/MAN1 was dispensable for plant viability, whereas the cellular organization of the shoot and root apical meristems were abnormal. Forward genetic screening identified an epistatic interaction between the largest Pol II subunit nrpb1-A325V variant and the man1-1 mutation. The suppression of the man1-1 mutant developmental defects by a mutation in Pol II suggests a link between TFIIF functions in Arabidopsis transcription cycle and the maintenance of cellular organization in the shoot and root apical meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/deficiência , Fatores de Transcrição TFII/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição TFII/genética
3.
Proc Natl Acad Sci U S A ; 108(16): 6674-9, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464319

RESUMO

Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plastídeos/genética , Biossíntese de Proteínas/fisiologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
4.
Beilstein J Nanotechnol ; 13: 127-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145833

RESUMO

A modern level of nanotechnology allows us to create conceptually new test systems for chemical analyses and to develop sensitive and compact sensors for various types of substances. However, at present, there are very few commercially available compact sensors for the determination of toxic and carcinogenic substances, such as organic solvents that are used in some construction materials. This article contains an overview of how 3D photonic crystals are used for the creation of a new test system for nonpolar organic solvents. The morphology and structural parameters of the photonic crystals, based upon a crystalline colloidal array with a sensing matrix of polydimethylsiloxane, have been determined by using scanning electron microscopy and by the results of specular reflectance spectroscopy based on the Bragg-Snell law. A new approach has been proposed for the application of this sensor in chemical analysis for the qualitative detection of saturated vapors of volatile organic compounds due to configuration changes of the photonic bandgap, recorded by diffuse reflectance spectroscopy. The exposure of the sensor to aromatic (benzene, toluene and p-xylene) and aliphatic (n-pentane, n-heptane, n-octane and n-decane) hydrocarbons has been analyzed. The reconstitution of spectral parameters of the sensor during the periodic detection of saturated vapors of toluene has been evaluated.

5.
Proc Natl Acad Sci U S A ; 105(8): 3163-8, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287026

RESUMO

Sterols have multiple functions in all eukaryotes. In plants, sterol biosynthesis is initiated by the enzymatic conversion of 2,3-oxidosqualene to cycloartenol. This reaction is catalyzed by cycloartenol synthase 1 (CAS1), which belongs to a family of 13 2,3-oxidosqualene cyclases in Arabidopsis thaliana. To understand the full scope of sterol biological functions in plants, we characterized allelic series of cas1 mutations. Plants carrying the weak mutant allele cas1-1 were viable but developed albino inflorescence shoots because of photooxidation of plastids in stems that contained low amounts of carotenoids and chlorophylls. Consistent with the CAS1 catalyzed reaction, mutant tissues accumulated 2,3-oxidosqualene. This triterpenoid precursor did not increase at the expense of the pathway end products. Two strong mutations, cas1-2 and cas1-3, were not transmissible through the male gametes, suggesting a role for CAS1 in male gametophyte function. To validate these findings, we analyzed a conditional CRE/loxP recombination-dependent cas1-2 mutant allele. The albino phenotype of growing leaf tissues was a typical defect observed shortly after the CRE/loxP-induced onset of CAS1 loss of function. In the induced cas1-2 seedlings, terminal phenotypes included arrest of meristematic activity, followed by necrotic death. Mutant tissues accumulated 2,3-oxidosqualene and contained low amounts of sterols. The vital role of sterols in membrane functioning most probably explains the requirement of CAS1 for plant cell viability. The observed impact of cas1 mutations on a chloroplastic function implies a previously unrecognized role of sterols or triterpenoid metabolites in plastid biogenesis.


Assuntos
Arabidopsis/enzimologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/fisiologia , Fenótipo , Plastídeos/fisiologia , Sequência de Bases , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Primers do DNA/genética , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica , Dados de Sequência Molecular , Estrutura Molecular , Mutação/genética , Caules de Planta/ultraestrutura , Plastídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Esqualeno/análogos & derivados , Esqualeno/análise
6.
Sci Rep ; 9(1): 18052, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792228

RESUMO

The variety, relative importance and eco-evolutionary stability of reproductive barriers are critical to understanding the processes of speciation and species persistence. Here we evaluated the strength of the biotic prezygotic and postzygotic isolation barriers between closely related morning glory species from Amazon canga savannahs. The flower geometry and flower visitor assemblage analyses supported pollination by the bees in lavender-flowered Ipomoea marabaensis and recruitment of hummingbirds as pollinators in red-flowered Ipomoea cavalcantei. Nevertheless, native bee species and alien honeybees foraged on flowers of both species. Real-time interspecific hybridization underscored functionality of the overlap in flower visitor assemblages, questioning the strength of prezygotic isolation underpinned by diversification in flower colour and geometry. Interspecific hybrids were fertile and produced offspring in nature. No significant asymmetry in interspecific hybridization and hybrid incompatibilities among offspring were found, indicating weak postmating and postzygotic isolation. The results suggested that despite floral diversification, the insular-type geographic isolation remains a major barrier to gene flow. Findings set a framework for the future analysis of contemporary evolution of plant-pollinator networks at the population, community, and ecosystem levels in tropical ecosystems that are known to be distinct from the more familiar temperate climate models.


Assuntos
Especiação Genética , Ipomoea/fisiologia , Polinização/genética , Isolamento Reprodutivo , Animais , Abelhas , Aves , Brasil , Flores/crescimento & desenvolvimento , Geografia , Pradaria , Hibridização Genética
7.
Sci Rep ; 7(1): 7493, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790327

RESUMO

Amazon comprises a vast variety of ecosystems, including savannah-like Canga barrens that evolved on iron-lateritic rock plateaus of the Carajás Mountain range. Individual Cangas are enclosed by the rain forest, indicating insular isolation that enables speciation and plant community differentiation. To establish a framework for the research on natural history and conservation management of endemic Canga species, seven chloroplast DNA loci and an ITS2 nuclear DNA locus were used to study natural molecular variation of the red flowered Ipomoea cavalcantei and the lilac flowered I. marabaensis. Partitioning of the nuclear and chloroplast gene alleles strongly suggested that the species share the most recent common ancestor, pointing a new independent event of the red flower origin in the genus. Chloroplast gene allele analysis showed strong genetic differentiation between Canga populations, implying a limited role of seed dispersal in exchange of individuals between Cangas. Closed haplotype network topology indicated a requirement for the paternal inheritance in generation of cytoplasmic genetic variation. Tenfold higher nucleotide diversity in the nuclear ITS2 sequences distinguished I. cavalcantei from I. marabaensis, implying a different pace of evolutionary changes. Thus, Canga ecosystems offer powerful venues for the study of speciation, multitrait adaptation and the origins of genetic variation.


Assuntos
Adaptação Fisiológica/genética , DNA Intergênico/genética , Especiação Genética , Ipomoea/genética , Brasil , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Conservação dos Recursos Naturais , DNA de Cloroplastos/metabolismo , DNA de Cloroplastos/ultraestrutura , DNA Intergênico/química , DNA Intergênico/metabolismo , Variação Genética , Pradaria , Haplótipos , Ipomoea/classificação , Conformação de Ácido Nucleico , Filogenia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Floresta Úmida
8.
Front Plant Sci ; 6: 190, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870604

RESUMO

African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

9.
Plant Signal Behav ; 3(11): 978-80, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704425

RESUMO

Phenotypes of Arabidopsis thaliana that carry mutations in CYCLOARTENOL SYNTHASE 1 (CAS1) which is required in sterol biosynthesis have been described. Knockout mutant alleles are responsible of a male-specific transmission defect. Plants carrying a weak mutant allele cas1-1 accumulate 2,3-oxidosqualene, the substrate of CAS1, in all analyzed organs. Mutant cas1-1 plants develop albino inflorescence shoots that contain low amount of carotenoids and chlorophylls. The extent of this albinism, which affects Arabidopsis stems late in development, may be modulated by the light/dark regime. The fact that chloroplast differentiation and pigment accumulation in inflorescence shoots are associated with a low CAS1 expression could suggest the involvement of 2,3-oxidosqualene in a yet unknown regulatory mechanism linking the sterol biosynthetic segment, located in the cytoplasm, and the chlorophyll and carotenoid biosynthetic segments, located in the plastids, in the highly complex terpenoid network. CAS1 loss of function in a mosaic analysis of seedlings further demonstrated that leaf albinism associated with an accumulation of 2,3-oxidosqualene is a novel phenotype for plant sterol deficient mutant.

10.
Plant Cell ; 19(1): 211-25, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17209125

RESUMO

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Arabidopsis/enzimologia , Ciclo Celular/fisiologia , Dano ao DNA , Proteínas Serina-Treonina Quinases/fisiologia , Afidicolina/farmacologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Reparo do DNA , Replicação do DNA , Regulação da Expressão Gênica de Plantas , Hidroxiureia/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro , Plântula/citologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais
11.
EMBO Rep ; 7(3): 308-13, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16415790

RESUMO

RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.


Assuntos
Nicotiana/genética , Plastídeos/genética , Edição de RNA , RNA de Plantas/metabolismo , Sequência de Bases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
12.
Plant Physiol ; 140(3): 922-32, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16461380

RESUMO

AtATM3, an ATP-binding cassette transporter of Arabidopsis (Arabidopsis thaliana), is a mitochondrial protein involved in the biogenesis of iron-sulfur clusters and iron homeostasis in plants. Our gene expression analysis showed that AtATM3 is up-regulated in roots of plants treated with cadmium [Cd(II)] or lead (II); hence, we investigated whether this gene is involved in heavy metal tolerance. We found that AtATM3-overexpressing plants were enhanced in resistance to Cd, whereas atatm3 mutant plants were more sensitive to Cd than their wild-type controls. Moreover, atatm3 mutant plants expressing 35S promoter-driven AtATM3 were more resistant to Cd than wild-type plants. Since previous reports often showed that the cytosolic glutathione level is positively correlated with heavy metal resistance, we measured nonprotein thiols (NPSH) in these mutant plants. Surprisingly, we found that atatm3 contained more NPSH than the wild type under normal conditions. AtATM3-overexpressing plants did not differ under normal conditions, but contained less NPSH than wild-type plants when exposed to Cd(II). These results suggest a role for AtATM3 in regulating cellular NPSH level, a hypothesis that was further supported by our gene expression study. Genetic or pharmacological inhibition of glutathione biosynthesis led to the elevated expression of AtATM3, whereas expression of the glutathione synthase gene GSH1 was increased under Cd(II) stress and in the atatm3 mutant. Because the closest homolog of AtATM3 in fission yeast (Schizosaccharomyces pombe), HMT1, is a vacuolar membrane-localized phytochelatin-Cd transporter, it is tempting to speculate that glutathione-Cd(II) complexes formed in the mitochondria are exported by AtATM3. In conclusion, our data show that AtATM3 contributes to Cd resistance and suggest that it may mediate transport of glutamine synthetase-conjugated Cd(II) across the mitochondrial membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Cádmio/farmacologia , Chumbo/farmacologia , Proteínas Mitocondriais/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Compostos de Sulfidrila/metabolismo , Regulação para Cima
13.
Theor Appl Genet ; 113(3): 519-27, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16758189

RESUMO

The plastid genome of angiosperms represents an attractive target for genetic manipulations. However plastid transformation of higher plants, especially of agriculturally valuable crops is an extremely difficult problem. Transformation protocols developed for tobacco 15 years ago failed to produce similar results with more than a handful of other species so far. We have analyzed plastid transformability of remote cytoplasmic hybrids (cybrids) that combine nuclei of tobacco, an easily transformable species, and plastids of some other, recalcitrant Solanaceae species. Here, we demonstrate that the plastids of five species of Solanaceae family, representing two subfamilies and three tribes, can be easily transformed if the plastids of these species are transferred into a cell of a transformable species (tobacco). The results can be considered to be an alternative approach to the development of plastid transformation technologies for recalcitrant species using a transformable intermediary ("clipboard") host.


Assuntos
Nicotiana/genética , Plastídeos/genética , Solanaceae/genética , Transformação Genética , Quimera/genética , Técnicas Genéticas , Plastídeos/transplante , Solanaceae/ultraestrutura , Nicotiana/anatomia & histologia , Nicotiana/citologia
14.
Plant Cell ; 17(6): 1815-28, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15894714

RESUMO

The subgenomes of the plant cell, the nuclear genome, the plastome, and the chondriome are known to interact through various types of coevolving macromolecules. The combination of the organellar genome from one species with the nuclear genome of another species often leads to plants with deleterious phenotypes, demonstrating that plant subgenomes coevolve. The molecular mechanisms behind this nuclear-organellar incompatibility have been elusive, even though the phenomenon is widespread and has been known for >70 years. Here, we show by direct and reverse genetic approaches that the albino phenotype of a flowering plant with the nuclear genome of Atropa belladonna (deadly nightshade) and the plastome of Nicotiana tabacum (tobacco) develops as a result of a defect in RNA editing of a tobacco-specific editing site in the plastid ATPase alpha-subunit transcript. A plastome-wide analysis of RNA editing in these cytoplasmic hybrids and in plants with a tobacco nucleus and nightshade chloroplasts revealed additional defects in the editing of species-specific editing sites, suggesting that differences in RNA editing patterns in general contribute to the pigment deficiencies observed in interspecific nuclear-plastidial incompatibilities.


Assuntos
Atropa belladonna/genética , ATPases de Cloroplastos Translocadoras de Prótons/genética , Nicotiana/genética , Pigmentos Biológicos/metabolismo , Plastídeos/metabolismo , Edição de RNA/fisiologia , RNA Mensageiro/genética , Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta , Células Híbridas/metabolismo , Dados de Sequência Molecular , Pigmentação/genética , Pigmentos Biológicos/genética , Plastídeos/genética , Subunidades Proteicas/genética , RNA de Plantas/genética
15.
Plant Physiol ; 139(4): 1773-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299173

RESUMO

Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the alpha,beta-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the alpha,beta-unsaturated bond of the photoproduced reactive carbonyls.


Assuntos
Nicotiana/metabolismo , Oxirredutases/metabolismo , Sequência de Bases , DNA de Plantas/genética , Cinética , Peróxidos Lipídicos/metabolismo , Dados de Sequência Molecular , Estresse Oxidativo , Oxirredutases/genética , Fotobiologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato , Nicotiana/genética , Nicotiana/efeitos da radiação
16.
Plant J ; 33(5): 899-909, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609031

RESUMO

Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Mutação , Fosfatidilgliceróis/metabolismo , Folhas de Planta/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
17.
Plant Physiol ; 134(2): 605-13, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14739345

RESUMO

Iron (Fe) is an essential element for living organisms. However, under aerobic conditions, its use is complicated because of its high insolubility and its potential toxicity through reactivity with reduced forms of oxygen. In plants, Fe overload can lead to intracellular concentrations beyond the storage and detoxification capacities of cells. Such a displacement toward a pro-oxidant state can activate antioxidant defenses, including Fe-mediated expression of ascorbate peroxidase genes. In this work, we demonstrate that Fe overload specifically induces the AtAPX1 gene encoding a cytosolic ascorbate peroxidase in Arabidopsis leaves. The strong constitutive expression of the AtAPX1 gene in roots is unaffected by Fe and depends on the first 5'-untranslated region intron. Presence of an AtAPX1 expressed sequence tag in the Arabidopsis database, longer in its 5' region than what could be predicted from the published AtAPX1transcription initiation site, leads to define a new transcription initiation region for this gene. A minimal promoter sequence enabling Fe-induced expression of the AtAPX1 gene is defined by following expression of various AtAPX1::beta-glucuronidase constructs in transformed Arabidopsis plantlets. This 118-bp minimal promoter sequence contains an Fe-dependent regulatory sequence-like cis-element known to be necessary for maize (Zea mays) and Arabidopsis ferritin gene derepression in response to Fe overload. Site-directed mutagenesis of this element within the AtAPX1 promoter sequence does not abolish the Fe-dependent activation of a reporter gene, indicating that it is likely not involved in the Fe-regulated expression of the AtAPX1 gene.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ferro/farmacologia , Peroxidases/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases , Sequência de Bases , Citosol/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Mutação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peroxidases/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Elementos de Resposta/genética , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato
18.
Plant Cell ; 15(4): 965-80, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12671091

RESUMO

The 26S proteasome is an essential protease complex responsible for removing most short-lived intracellular proteins, especially those modified with polyubiquitin chains. We show here that an Arabidopsis mutant expressing an altered RPN10 subunit exhibited a pleiotropic phenotype consistent with specific changes in 26S proteasome function. rpn10-1 plants displayed reduced seed germination, growth rate, stamen number, genetic transmission through the male gamete, and hormone-induced cell division, which can be explained partially by a constitutive downregulation of the key cell cycle gene CDKA;1. rpn10-1 also was more sensitive to abscisic acid (ABA), salt, and sucrose stress and to DNA-damaging agents and had decreased sensitivity to cytokinin and auxin. Most of the phenotypes can be explained by a hypersensitivity to ABA, which is reflected at the molecular level by the selective stabilization of the short-lived ABA-signaling protein ABI5. Collectively, these results indicate that RPN10 affects a number of regulatory processes in Arabidopsis likely by directing specific proteins to the 26S proteasome for degradation. A particularly important role may be in regulating the responses to signals promulgated by ABA.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Reagentes de Ligações Cruzadas/farmacologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Teste de Complementação Genética , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Ácidos Indolacéticos/farmacologia , Mitomicina/farmacologia , Mutação , Peptídeo Hidrolases/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Cloreto de Sódio/farmacologia , Especificidade por Substrato , Sacarose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
19.
Plant Cell ; 14(1): 17-32, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11826296

RESUMO

The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regulatory particle is involved in cytokinin responses. A T-DNA insertion mutant that affects RPN12a has a decreased rate of leaf formation, reduced root elongation, delayed skotomorphogenesis, and altered growth responses to exogenous cytokinins, suggesting that the mutant has decreased sensitivity to the hormone. The cytokinin-inducible genes CYCD3 and NIA1 are upregulated constitutively in rpn12a-1, indicating that feedback-inhibitory mechanisms also may be altered. rpn12a-1 seedlings also showed changes in auxin-induced growth responses, further illustrating the close interaction between auxin and cytokinin regulation. In yeast, RPN12 is necessary for the G1/S and G2/M transitions of the cell cycle, phases that have been shown to be under cytokinin control in plants. We propose that RPN12a is part of the Arabidopsis 26S proteasome that controls the stability of one or more of the factors involved in cytokinin regulation.


Assuntos
Adenina/análogos & derivados , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Citocininas/farmacologia , Peptídeo Hidrolases/genética , Complexo de Endopeptidases do Proteassoma , Adenina/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Ciclina D3 , Ciclinas/genética , Ciclinas/fisiologia , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Ácidos Indolacéticos/farmacologia , Cinetina , Mitose/genética , Mitose/fisiologia , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Peptídeo Hidrolases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estruturas Vegetais/efeitos dos fármacos , Estruturas Vegetais/genética , Estruturas Vegetais/crescimento & desenvolvimento , Subunidades Proteicas , Homologia de Sequência de Aminoácidos , Ubiquitinas/metabolismo
20.
Plant Physiol ; 128(3): 1109-19, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11891265

RESUMO

gamma-Glutamyl transpeptidase (gamma-GT) is a ubiquitous enzyme that catalyzes the first step of glutathione (GSH) degradation in the gamma-glutamyl cycle in mammals. A cDNA encoding an Arabidopsis homolog for gamma-GT was overexpressed in tobacco (Nicotiana tabacum) plants. A high level of the membrane-bound gamma-GT activity was localized outside the cell in transgenic plants. The overproduced enzyme was characterized by a high affinity to GSH and was cleaved post-translationally in two unequal subunits. Thus, Arabidopsis gamma-GT is similar to the mammalian enzymes in enzymatic properties, post-translational processing, and cellular localization, suggesting analogous biological functions as a key enzyme in the catabolism of GSH.


Assuntos
Arabidopsis/enzimologia , Nicotiana/enzimologia , gama-Glutamiltransferase/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Membrana Celular/enzimologia , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Mamíferos/genética , Microscopia Confocal , Dados de Sequência Molecular , Família Multigênica , Estresse Oxidativo , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Nicotiana/genética , gama-Glutamiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa