Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 74(3): 1234-1250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33710653

RESUMO

BACKGROUND AND AIMS: Chronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a cochaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders, but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. APPROACH AND RESULTS: We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Transcriptional enhancer factor TEF-1 (TEA) domain transcription factor 1 (Tead1) and chemokine (C-X-C motif) ligand 1 (Cxcl1) mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to down-regulation of methylation level at its 5' untranslated promoter region. The increase in Fkbp5 expression led to induction in transcription factor TEAD1 through Hippo signaling pathway. Fkbp5 can interact with yes-associated protein (YAP) upstream kinase, mammalian Ste20-like kinase 1 (MST1), affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. CONCLUSIONS: We identified an FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Quimiocina CXCL1/metabolismo , Etanol/farmacologia , Via de Sinalização Hippo/genética , Hepatopatias Alcoólicas/genética , Proteínas de Ligação a Tacrolimo/genética , Animais , Metilação de DNA , Perfilação da Expressão Gênica , Humanos , Inflamação , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Sinalização YAP/metabolismo
2.
Hepatology ; 74(5): 2436-2451, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34096637

RESUMO

BACKGROUND AND AIMS: We conducted a comprehensive serum transcriptomic analysis to explore the roles of microRNAs (miRNAs) in alcohol-associated hepatitis (AH) pathogenesis and their prognostic significance. APPROACH AND RESULTS: Serum miRNA profiling was performed in 15 controls, 20 heavy drinkers without liver disease, and 65 patients with AH and compared to publicly available hepatic miRNA profiling in AH patients. Among the top 26 miRNAs, expression of miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p were significantly reduced in both serum and liver of AH patients. Pathway analysis of the potential targets of these miRNAs uncovered the genes related to DNA synthesis and cell-cycle progression pathways, including ribonucleotide reductase regulatory subunit M2 (RRM2), cyclin D1 (CCND1), cyclin D2 (CCND2), MYC proto-oncogene (MYC), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). We found a significant increase in the protein expression of RRM2, CCND1, and CCND2, but not MYC and PMAIP1, in AH patients who underwent liver transplantation; miR-26b-5p and miR-30b-5p inhibited the 3'-UTR (untranslated region) luciferase activity of RRM2 and CCND2, and miR-20a-5p reduced the 3'-UTR luciferase activity of CCND1 and CCND2. During a median follow-up of 346 days, 21% of AH patients died; these patients had higher body mass index (BMI), Model for End-Stage Liver Disease (MELD), and serum miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p than those who survived. Cox regression analysis showed that BMI, MELD score, miR-20a-5p, miR-146a-5p, and miR-26b-5p predicted mortality. CONCLUSIONS: Patients with AH attempt to deal with hepatocyte injury by down-regulating specific miRNAs and up-regulating genes responsible for DNA synthesis and cell-cycle progression. Higher expression of these miRNAs, suggestive of a diminished capacity in liver regeneration, predicts short-term mortality in AH patients.


Assuntos
Perfilação da Expressão Gênica/métodos , Hepatite Alcoólica/genética , Hepatite Alcoólica/mortalidade , Regeneração Hepática/genética , MicroRNAs/genética , Transcriptoma/genética , Regiões 3' não Traduzidas , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Estudos de Casos e Controles , Doença Hepática Terminal/complicações , Doença Hepática Terminal/mortalidade , Feminino , Seguimentos , Hepatite Alcoólica/sangue , Hepatite Alcoólica/complicações , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Transplante de Fígado , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Regulação para Cima/genética
3.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G651-G660, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509434

RESUMO

Melatonin was discovered in 1958 by Aaron Lerner. Its name comes from the ability of melatonin to change the shape of amphibian melanophores from stellate to roundish. Starting from the 1980s, the role of melatonin in the regulation of mammalian circadian and seasonal clocks has been elucidated. Presently, several other effects have been identified in different organs. For example, the beneficial effects of melatonin in models of liver damage have been described. This review gives first a general background on experimental and clinical data on the use of melatonin in liver damage. The second part of the review focuses on the findings related to the role of melatonin in biliary functions, suggesting a possible use of melatonin therapy in human diseases of the biliary tree.


Assuntos
Doenças Biliares/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Melatonina/metabolismo , Animais , Antioxidantes/uso terapêutico , Doenças Biliares/etiologia , Doenças Biliares/metabolismo , Depressores do Sistema Nervoso Central/uso terapêutico , Humanos , Hepatopatias/etiologia , Hepatopatias/metabolismo , Melatonina/uso terapêutico
4.
Int J Mol Sci ; 20(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052525

RESUMO

Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.


Assuntos
Comunicação Celular , Vesículas Extracelulares/patologia , Hepatócitos/patologia , Hepatopatias/patologia , Animais , Vesículas Extracelulares/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Hepatopatias/metabolismo , Hepatopatias/terapia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia
5.
J Nutr ; 148(3): 389-400, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546304

RESUMO

Background: Epidemiologic and in vitro studies suggest independent linkages between poor folate and/or vitamin B-12 nutrition, genomic human papillomavirus (HPV) type 16 viral integration, and cancer. However, there is no direct evidence in vivo to support the causative role of poor folate nutrition in HPV16 integration into the cellular genome. Objective: We tested the hypothesis that folate deficiency enables the integration of HPV16 into the genome of HPV16-harboring keratinocytes, and could thereby influence earlier transformation of these cells to cancer in an animal model. Methods: HPV16-harboring human keratinocytes [(HPV16)BC-1-Ep/SL] were differentiated into 3-dimensional HPV16-organotypic rafts under either folate-replete or folate-deficient conditions in vitro. These were then subcutaneously implanted in severely immunocompromised female Beige Nude XID (Hsd: NIHS-LystbgFoxn1nuBtkxid) mice (4-6 wk old, 16-18 g) fed either a folate-replete diet (1200 nmol folate/kg diet) or a progressively folate-deficient diet (600 or 400 nmol folate/kg diet) for 2 mo prior to raft-implantation surgery, and indefinitely thereafter. The tumors that subsequently developed were characterized for onset, pattern of growth, morphology, HPV16 oncogene expression, and HPV16-genomic integration. Results: All HPV16-organotypic rafts developed in either folate-replete or physiologic low-folate media in vitro and subsequently implanted in folate-replete mice eventually transformed into aggressive malignancies within weeks. When compared to HPV16-high folate-organotypic raft-derived tumors from mice fed either a 1200 or 600 nmol folate/kg diet, those raft-derived cancers that developed in mice fed a 400 nmol folate/kg diet expressed significantly more HPV16 E6 (1.8-fold more) and E7 (2.8-fold more) oncogenic proteins (P = 0.001), and revealed significantly more HPV16-integration sites in genomic DNA (2-fold more), either directly into, or in the vicinity of, cellular genes (P < 0.05). Conclusions: This unprecedented animal model for the consistent rapid transformation of differentiated (HPV16)BC-1-Ep/SL-derived organotypic raft-keratinocytes to cancer in Beige Nude XID mice confirms that dietary folate deficiency can profoundly influence and modulate events leading to HPV16-induced carcinogenesis, and facilitates genomic integration of HPV16 DNA in vivo.


Assuntos
Carcinogênese/genética , Deficiência de Ácido Fólico/complicações , Ácido Fólico/administração & dosagem , Genoma , Papillomavirus Humano 16/genética , Neoplasias/etiologia , Integração Viral , Animais , DNA , Modelos Animais de Doenças , Feminino , Humanos , Queratinócitos/virologia , Camundongos Nus , Neoplasias/genética , Neoplasias/virologia , Estado Nutricional , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/etiologia , Infecções por Papillomavirus/virologia , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero
6.
J Nutr ; 147(4): 482-498, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250194

RESUMO

Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1.


Assuntos
Receptor 2 de Folato/metabolismo , Deficiência de Ácido Fólico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Placenta/citologia , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , Proteínas de Ligação a DNA , Feminino , Receptor 2 de Folato/genética , Ácido Fólico/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero/metabolismo
7.
Bioorg Med Chem Lett ; 24(22): 5304-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25304896

RESUMO

We synthesized a series of serum-stable covalently linked drugs derived from 3'-C-methyladenosine (3'-Me-Ado) and valproic acid (VPA), which are ribonucleotide reductase (RR) and histone deacetylase (HDAC) inhibitors, respectively. While the combination of free VPA and 3'-Me-Ado resulted in a clear synergistic apoptotic effect, the conjugates had lost their HDAC inhibitory effect as well as the corresponding apoptotic activity. Two of the analogs, 2',5'-bis-O-valproyl-3'-C-methyladenosine (A160) and 5'-O-valproyl-3'-C-methyladenosine (A167), showed promising cytotoxic activities against human hematological and solid cancer cell lines. A167 was less potent than A160 but had interesting features as an RR inhibitor. It inhibited RR activity by competing with ATP as an allosteric effector and concomitantly reduced the intracellular deoxyribonucleoside triphosphate (dNTP) pools. A167 represents a novel lead compound, which in contrast to previously used RR nucleoside analogs does not require intracellular kinases for its activity and therefore holds promise against drug resistant tumors with downregulated nucleoside kinases.


Assuntos
Adenosina/análogos & derivados , Inibidores Enzimáticos/síntese química , Ribonucleotídeo Redutases/antagonistas & inibidores , Ácido Valproico/química , Adenosina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ésteres/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Cinética , Ribonucleotídeo Redutases/metabolismo
8.
J Biol Chem ; 287(15): 12559-77, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22351779

RESUMO

Although HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2L1 genes) with greater affinity. Together, these interactions led to a profound reduction of both L1 and L2 mRNA and proteins without effects on HPV16 E6 and E7 in vitro, and in cultured keratinocyte monolayers and HPV16-low folate-organotypic rafts developed in physiological low folate medium. In addition, HPV16-low folate-organotypic rafts contained fewer HPV16 viral particles, a similar HPV16 DNA viral load, and a much greater extent of integration of HPV16 DNA into genomic DNA when compared with HPV16-high folate-organotypic rafts. Subcutaneous implantation of 18-day old HPV16-low folate-organotypic rafts into folate-replete immunodeficient mice transformed this benign keratinocyte-derived raft tissue into an aggressive HPV16-induced cancer within 12 weeks. Collectively, these studies establish a likely molecular linkage between poor folate nutrition and HPV16 and predict that nutritional folate and/or vitamin-B(12) deficiency, which are both common worldwide, will alter the natural history of HPV16 infections and also warrant serious consideration as reversible co-factors in oncogenic transformation of HPV16-infected tissues to cancer.


Assuntos
Transformação Celular Viral , Deficiência de Ácido Fólico , Papillomavirus Humano 16/fisiologia , Queratinócitos/virologia , Neoplasias Experimentais/virologia , Infecções por Papillomavirus/virologia , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Catalase/biossíntese , Catalase/genética , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA , Feminino , Ácido Fólico/metabolismo , Genes Reporter , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Homocisteína/química , Homocisteína/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/metabolismo , Queratinócitos/transplante , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neoplasias Experimentais/patologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Ligação Proteica , Proteólise , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Viral/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Compostos de Sulfidrila/metabolismo , Carga Tumoral , Integração Viral
9.
Nat Commun ; 14(1): 1703, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973273

RESUMO

Ca2+ overload-induced mitochondrial dysfunction is considered as a major contributing factor in the pathogenesis of alcohol-associated liver disease (ALD). However, the initiating factors that drive mitochondrial Ca2+ accumulation in ALD remain elusive. Here, we demonstrate that an aberrant increase in hepatic GRP75-mediated mitochondria-associated ER membrane (MAM) Ca2+-channeling (MCC) complex formation promotes mitochondrial dysfunction in vitro and in male mouse model of ALD. Unbiased transcriptomic analysis reveals PDK4 as a prominently inducible MAM kinase in ALD. Analysis of human ALD cohorts further corroborate these findings. Additional mass spectrometry analysis unveils GRP75 as a downstream phosphorylation target of PDK4. Conversely, non-phosphorylatable GRP75 mutation or genetic ablation of PDK4 prevents alcohol-induced MCC complex formation and subsequent mitochondrial Ca2+ accumulation and dysfunction. Finally, ectopic induction of MAM formation reverses the protective effect of PDK4 deficiency in alcohol-induced liver injury. Together, our study defines a mediatory role of PDK4 in promoting mitochondrial dysfunction in ALD.


Assuntos
Retículo Endoplasmático , Hepatopatias , Camundongos , Animais , Masculino , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias , Hepatopatias/metabolismo
10.
J Investig Med ; 70(6): 1438-1441, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35246468

RESUMO

The intact telomere structure is essential for the prevention of the chromosome end-to-end fusions and maintaining genomic integrity. The maintenance of telomere length is critical for cellular homeostasis. The shortening of telomeres has been reported in patients with chronic liver diseases. The telomere length has not been systemically studied in patients with alcohol-associated liver disease (ALD) at different stages, such as alcoholic hepatitis and alcoholic cirrhosis. In this brief report, we observed evidence of telomere shortening without changes in the telomerase activity in the liver of patients with alcoholic hepatitis and alcoholic cirrhosis when compared with controls. The alterations in the genes associated with telomere binding proteins were only observed in patients with alcoholic cirrhosis. Future studies are required to determine the mechanism of how alcohol affects the length of the telomere and if the shortening impacts the disease progression in ALD.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Telomerase , Humanos , Cirrose Hepática Alcoólica/genética , Hepatopatias Alcoólicas/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero
11.
Hepatol Commun ; 6(10): 2812-2826, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866567

RESUMO

The role of activin B, a transforming growth factor ß (TGFß) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers. Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure. Conclusions: We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Ribose , Ativinas , Difosfato de Adenosina/efeitos adversos , Animais , Tetracloreto de Carbono/toxicidade , Humanos , Cirrose Hepática/induzido quimicamente , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ribose/efeitos adversos , Fator de Crescimento Transformador beta/efeitos adversos
12.
Hepatol Commun ; 6(6): 1361-1372, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35134262

RESUMO

Alcohol-associated liver disease is the leading cause of chronic liver disease. We hypothesized that the expression of specific coding genes is critical for the progression of alcoholic cirrhosis (AC) from compensated to decompensated states. For the discovery phase, we performed RNA sequencing analysis of 16 peripheral blood RNA samples, 4 healthy controls (HCs) and 12 patients with AC. The DEGs from the discovery cohort were validated by quantitative polymerase chain reaction in a separate cohort of 17 HCs and 48 patients with AC (17 Child-Pugh A, 16 Child-Pugh B, and 15 Child-Pugh C). We observed that the numbers of differentially expressed messenger RNAs (mRNAs) were more pronounced with worsening disease severity. Pathway analysis for differentially expressed genes for patients with Child-Pugh A demonstrated genes involved innate immune responses; those in Child-Pugh B belonged to genes related to oxidation and alternative splicing; those in Child-Pugh C related to methylation, acetylation, and alternative splicing. We found significant differences in the expression of heme oxygenase 1 (HMOX1) and ribonucleoprotein, PTB binding 1 (RAVER1) in peripheral blood of those who died during the follow-up when compared to those who survived. Conclusion: Unique mRNAs that may implicate disease progression in patients with AC were identified by using a transcriptomic approach. Future studies to confirm our results are needed, and comprehensive mechanistic studies on the implications of these genes in AC pathogenesis and progression should be further explored.


Assuntos
Cirrose Hepática Alcoólica , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Cirrose Hepática Alcoólica/genética , RNA Mensageiro/genética , Índice de Gravidade de Doença , Transcriptoma/genética
13.
Transl Res ; 240: 87-98, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743014

RESUMO

Appropriate screening tool for excessive alcohol use (EAU) is clinically important as it may help providers encourage early intervention and prevent adverse outcomes. We hypothesized that patients with excessive alcohol use will have distinct serum metabolites when compared to healthy controls. Serum metabolic profiling of 22 healthy controls and 147 patients with a history of EAU was performed. We employed seemingly unrelated regression to identify the unique metabolites and found 67 metabolites (out of 556), which were differentially expressed in patients with EAU. Sixteen metabolites belong to the sphingolipid metabolism, 13 belong to phospholipid metabolism, and the remaining 38 were metabolites of 25 different pathways. We also found 93 serum metabolites that were significantly associated with the total quantity of alcohol consumption in the last 30 days. A total of 15 metabolites belong to the sphingolipid metabolism, 11 belong to phospholipid metabolism, and 7 metabolites belong to lysolipid. Using a Venn diagram approach, we found the top 10 metabolites with differentially expressed in EAU and significantly associated with the quantity of alcohol consumption, sphingomyelin (d18:2/18:1), sphingomyelin (d18:2/21:0,d16:2/23:0), guanosine, S-methylmethionine, 10-undecenoate (11:1n1), sphingomyelin (d18:1/20:1, d18:2/20:0), sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0), N-acetylasparagine, sphingomyelin (d18:1/19:0, d19:1/18:0), and 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1). The diagnostic performance of the top 10 metabolites, using the area under the ROC curve, was significantly higher than that of commonly used markers. We have identified a unique metaboloic signature among patients with EAU. Future studies to validate and determine the kinetics of these markers as a function of alcohol consumption are needed.


Assuntos
Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/metabolismo , Metaboloma , Metabolômica , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Modelos Lineares , Masculino , Redes e Vias Metabólicas , Curva ROC
14.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838051

RESUMO

Intrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Animais , Etanol/efeitos adversos , Hepatite Alcoólica/genética , Hepatite Alcoólica/metabolismo , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Cancer ; 128(10): 2481-94, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20669221

RESUMO

Dimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analog with preclinical activity in hematologic malignancies. Using non-small lung cancer (NSCLC) cell lines (A549 and H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC-3, HT-1197 and HT-1376) and a bladder papilloma (RT-4), we aimed to characterize DMAPT's anticancer activity in tobacco-associated neoplasms. Flow cytometric, electrophoretic mobility gel shift assays (EMSA), and Western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and antiapoptotic proteins, TRAF-2 and XIAP. DMAPT-induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type-dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Using a BrdU accumulation assay, 5-20 µM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC-3 subcutaneous xenograft growth by 54% (p = 0.015) and 63% (p < 0.01), respectively, and A549 lung metastatic volume by 28% (p = 0.043). In total, this data demonstrates DMAPT's novel anticancer properties in both early and late stage tobacco-associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC.


Assuntos
Divisão Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Nicotiana , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Neoplasias da Bexiga Urinária/patologia , Animais , Sequência de Bases , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , Nitrosaminas/toxicidade , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sesquiterpenos/química , Nicotiana/química , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/metabolismo
16.
Bioorg Med Chem ; 19(5): 1594-605, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21324702

RESUMO

Cofactor-type inhibitors of inosine monophosphate dehydrogenase (IMPDH) that target the nicotinamide adenine dinucleotide (NAD) binding domain of the enzyme are modular in nature. They interact with the three sub-sites of the cofactor binding domain; the nicotinamide monophosphate (NMN) binding sub-site (N sub-site), the adenosine monophosphate (AMP) binding sub-site (A sub-site), and the pyrophosphate binding sub-site (P sub-site or P-groove). Mycophenolic acid (MPA) shows high affinity to the N sub-site of human IMPDH mimicking NMN binding. We found that the attachment of adenosine to the MPA through variety of linkers afforded numerous mycophenolic adenine dinucleotide (MAD) analogues that inhibit the two isoforms of the human enzyme in low nanomolar to low micromolar range. An analogue 4, in which 2-ethyladenosine is attached to the mycophenolic alcohol moiety through the difluoromethylenebis(phosphonate) linker, was found to be a potent inhibitor of hIMPDH1 (K(i)=5 nM), and one of the most potent, sub-micromolar inhibitor of leukemia K562 cells proliferation (IC(50)=0.45 µM). Compound 4 was as potent as Gleevec (IC(50)=0.56 µM) heralded as a 'magic bullet' against chronic myelogenous leukemia (CML). MAD analogues 7 and 8 containing an extended ethylenebis(phosphonate) linkage showed low nanomolar inhibition of IMPDH and low micromolar inhibition of K562 cells proliferation. Some novel MAD analogues described herein containing linkers of different length and geometry were found to inhibit IMPDH with K(i)'s lower than 100 nM. Thus, such linkers can be used for connection of other molecular fragments with high affinity to the N- and A-sub-site of IMPDH.


Assuntos
Difosfatos/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , IMP Desidrogenase/antagonistas & inibidores , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , IMP Desidrogenase/química , IMP Desidrogenase/metabolismo , Concentração Inibidora 50 , Células K562 , Modelos Moleculares , Estrutura Molecular
17.
Transl Res ; 230: 139-150, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33227504

RESUMO

The liver is a vital organ that controls glucose and lipid metabolism, hormone regulation, and bile secretion. Liver injury can occur from various insults such as viruses, metabolic diseases, and alcohol, which lead to acute and chronic liver diseases. Recent studies have demonstrated the implications of long noncoding RNAs (lncRNAs) in the pathogenesis of liver diseases. These newly discovered lncRNAs have various functions attributing to many cellular biological processes via distinct and diverse mechanisms. LncRNA H19, one of the first lncRNAs being identified, is highly expressed in fetal liver but not in adult normal liver. Its expression, however, is increased in liver diseases with various etiologies. In this review, we focused on the roles of H19 in the pathogenesis of liver diseases. This comprehensive review is aimed to provide useful perspectives and translational applications of H19 as a potential therapeutic target of liver diseases.


Assuntos
Hepatopatias/metabolismo , Hepatopatias/patologia , RNA Longo não Codificante/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética
18.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34423788

RESUMO

Alcohol-associated liver disease (ALD) represents a spectrum of histopathological changes, including alcoholic steatosis, steatohepatitis, and cirrhosis. One of the early responses to excessive alcohol consumption is lipid accumulation in the hepatocytes. Lipid ω-hydroxylation of medium- and long-chain fatty acid metabolized by the cytochrome P450 4A (CYP4A) family is an alternative pathway for fatty acid metabolism. The molecular mechanisms of CYP4A in ALD pathogenesis have not been elucidated. In this study, WT and Shp-/- mice were fed with a modified ethanol-binge, National Institute on Alcohol Abuse and Alcoholism model (10 days of ethanol feeding plus single binge). Liver tissues were collected every 6 hours for 24 hours and analyzed using RNA-Seq. The effects of REV-ERBα agonist (SR9009, 100 mg/kg/d) or CYP4A antagonist (HET0016, 5 mg/kg/d) in ethanol-fed mice were also evaluated. We found that hepatic Cyp4a10 and Cyp4a14 expression were significantly upregulated in WT mice, but not in Shp-/- mice, fed with ethanol. ChIP quantitative PCR and promoter assay revealed that REV-ERBα is the transcriptional repressor of Cyp4a10 and Cyp4a14. Rev-Erbα-/- hepatocytes had a marked induction of both Cyp4a genes and lipid accumulation. REV-ERBα agonist SR9009 or CYP4A antagonist HET0016 attenuated Cyp4a induction by ethanol and prevented alcohol-induced steatosis. Here, we have identified a role for the SHP/REV-ERBα/CYP4A axis in the pathogenesis of ALD. Our data also suggest REV-ERBα or CYP4A as the potential therapeutic targets for ALD.


Assuntos
Citocromo P-450 CYP4A/metabolismo , Ácidos Graxos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Amidinas , Animais , Citocromo P-450 CYP4A/antagonistas & inibidores , Modelos Animais de Doenças , Etanol/administração & dosagem , Etanol/efeitos adversos , Hepatócitos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Cultura Primária de Células , Pirrolidinas/administração & dosagem , RNA-Seq , Receptor EphB2 , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Tiofenos/administração & dosagem , Regulação para Cima
19.
Prostate ; 70(10): 1074-86, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20209491

RESUMO

BACKGROUND: To characterize the molecular changes associated with DMAPT-induced prostate cancer cell death and its in vivo activity. METHODS: CWR22Rv1 and PC-3 were subjected to flow cytometry, electrophoretic mobility shift assays, and Western blot studies to measure DMAPT's ability to generate reactive oxygen species (ROS), inhibit NFkappaB DNA binding, and cause changes in anti-apoptotic proteins. N-acetyl cysteine (NAC) and short hairpin RNA (shRNA) were used to determine the contribution of ROS and JNK2 activation, respectively. The BrdU incorporation assay was used to measure proliferation and trypan blue studies assessed cell viability after DMAPT treatment. The in vivo activity of DMAPT as a single agent and in combination with bicalutamide or docetaxel was assessed in a subcutaneous xenograft model with athymic nude female mice. RESULTS: DMAPT generated ROS with subsequent JNK activation and inhibited NFkappaB DNA binding and expression of NFkappaB-regulated anti-apoptotic proteins. DMAPT increased necrotic and apoptotic cell death in a cell-type-dependent manner and both types of cell death were blocked by NAC. Additionally, shRNA JNK2 partially blocked the anti-proliferative activity of DMAPT. DMAPT inhibited CWR22Rv1 and PC-3 cellular proliferation by 100% with 10 and 20 microM respectively and in vivo, DMAPT was more effective at inhibiting growth than biclutamide (CWR22v1) and docetaxel (PC-3). CONCLUSIONS: DMAPT promotes cell death by both generating ROS and inhibition of NFkappaB. Its in vivo activity supports the conduct of clinical trials in patients with castrate-resistant disease.


Assuntos
NF-kappa B/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Acetilcisteína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Organismos Livres de Patógenos Específicos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32083086

RESUMO

MicroRNAs are small non-coding RNAs that range in length from 18 to 24 nucleotides. As one of the most extensively studied microRNAs, microRNA-21 (miR-21) is highly expressed in many mammalian cell types. It regulates multiple biological functions such as proliferation, differentiation, migration, and apoptosis. In this review, we summarized the mechanism of miR-21 in the pathogenesis of various liver diseases. While it is clear that miR-21 plays an important role in different types of liver diseases, its use as a diagnostic marker for specific liver disease or its therapeutic implication are not ready for prime time due to significant variability and heterogeneity in the expression of miR-21 in different types of liver diseases depending on the studies. Additional studies to further define miR-21 functions and its mechanism in association with each type of chronic liver diseases are needed before we can translate the bedside observations into clinical settings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa