Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 18(10): e3000877, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33048924

RESUMO

Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.


Assuntos
Bacteriófagos/fisiologia , Escherichia coli/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Essenciais , Genoma Bacteriano , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes , Supressão Genética
2.
Microbiology (Reading) ; 167(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910616

RESUMO

Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.


Assuntos
Bacteriófagos , Fagos de Salmonella , Bacteriófagos/genética , Especificidade de Hospedeiro/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Virulência
3.
Artigo em Inglês | MEDLINE | ID: mdl-33077657

RESUMO

Inhaled bacteriophage (phage) therapy is a potential alternative to conventional antibiotic therapy to combat multidrug-resistant (MDR) Pseudomonas aeruginosa infections. However, pharmacokinetics (PK) and pharmacodynamics (PD) of phages are fundamentally different from antibiotics and the lack of understanding potentially limits optimal dosing. The aim of this study was to investigate the in vivo PK and PD profiles of antipseudomonal phage PEV31 delivered by pulmonary route in immune-suppressed mice. BALB/c mice were administered phage PEV31 at doses of 107 and 109 PFU by the intratracheal route. Mice (n = 4) were sacrificed at 0, 1, 2, 4, 8, and 24 h posttreatment and various tissues (lungs, kidney, spleen, and liver), bronchoalveolar lavage fluid, and blood were collected for phage quantification. In a separate study combining phage with bacteria, mice (n = 4) were treated with PEV31 (109 PFU) or phosphate-buffered saline (PBS) at 2 h postinoculation with MDR P. aeruginosa Infective PEV31 and bacteria were enumerated from the lungs. In the phage-only study, the PEV31 titer gradually decreased in the lungs over 24 h, with a half-life of approximately 8 h for both doses. In the presence of bacteria, in contrast, the PEV31 titer increased by almost 2-log10 in the lungs at 16 h. Furthermore, bacterial growth was suppressed in the PEV31-treated group, while the PBS-treated group showed exponential growth. Of the 10 colonies tested, four phage-resistant isolates were observed from the lung homogenates sampled at 24 h after phage treatment. These colonies had a different antibiogram to the parent bacteria. This study provides evidence that pulmonary delivery of phage PEV31 in mice can reduce the MDR bacterial burden.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções por Pseudomonas , Animais , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
4.
Food Microbiol ; 92: 103586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950171

RESUMO

Salmonella is one of the most common agents of foodborne disease worldwide. As natural alternatives to traditional antimicrobial agents, bacteriophages (phages) are emerging as highly effective biocontrol agents against Salmonella and other foodborne bacteria. Due to the high diversity within the Salmonella genus and emergence of drug resistant strains, improved efforts are necessary to find broad range and strictly lytic Salmonella phages for use in food biocontrol. Here, we describe the isolation and characterization of two Salmonella phages: ST-W77 isolated on S. Typhimurium and SE-W109 isolated on S. Enteritidis with extraordinary Salmonella specificity. Whole genome sequencing identified ST-W77 as a Myovirus within the Viunalikevirus genus and SE-W109 as a Siphovirus within the Jerseylikevirus genus. Infectivity studies using a panel of S. Typhimurium cell wall mutants revealed both phages require the lipopolysaccharide O-antigen, with SE-W109 also recognizing the flagella, during infection of Salmonella. A combination of both phages was capable of prolonged (one-week) antibacterial activity when added to milk or chicken meat contaminated with Salmonella. Due to their broad host ranges, strictly lytic lifestyles and lack of lysogeny-related genes or virulence genes in their genomes, ST-W77 and SE-W109 are ideal phages for further development as Salmonella biocontrol agents for food production.


Assuntos
Myoviridae/isolamento & purificação , Fagos de Salmonella/isolamento & purificação , Siphoviridae/isolamento & purificação , Animais , Galinhas , Microbiologia de Alimentos , Genoma Viral , Especificidade de Hospedeiro , Carne/microbiologia , Leite/microbiologia , Myoviridae/classificação , Myoviridae/genética , Myoviridae/fisiologia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Salmonella typhimurium/virologia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/fisiologia , Tailândia , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29158280

RESUMO

Bacteriophage therapy is a promising alternative treatment to antibiotics, as it has been documented to be efficacious against multidrug-resistant bacteria with minimal side effects. Several groups have demonstrated the efficacy of phage suspension in vivo to treat lung infections using intranasal delivery; however, phage dry-powder administration to the lungs has not yet been explored. Powder formulations provide potential advantages over a liquid formulation, including easy storage, transport, and administration. The purpose of this study was to assess the bactericidal activities of phage dry-powder formulations against multidrug-resistant (MDR) strain Pseudomonas aeruginosa FADDI-PA001 in a mouse lung infection model. Phage PEV20 spray dried with lactose and leucine produced an inhalable powder at a concentration of 2 × 107 PFU/mg. P. aeruginosa lung infection was established by intratracheal administration of the bacterial suspension to neutropenic mice. At 2 h after the bacterial challenge, the infected mice were treated with 2 mg of the phage powder using a dry-powder insufflator. At 24 h after the phage treatment, the bacterial load in the lungs was decreased by 5.3 log10 (P < 0.0005) in the phage-treated group compared with that in the nontreated group. Additionally, the phage concentration in the lungs was increased by 1 log10 at 24 h in the treated group. These results demonstrate the feasibility of a pulmonary delivery of phage PEV20 dry-powder formulation for the treatment of lung infection caused by antibiotic-resistant P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/química , Pós/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Ácido Valproico/análogos & derivados , Células A549 , Administração por Inalação , Animais , Carga Bacteriana/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inaladores de Pó Seco/métodos , Células HEK293 , Humanos , Pulmão/microbiologia , Camundongos , Tamanho da Partícula , Terapia por Fagos/métodos , Infecções por Pseudomonas/microbiologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Ácido Valproico/química
6.
Pharm Res ; 33(6): 1486-96, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26928668

RESUMO

PURPOSE: The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. METHOD: A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. RESULTS: A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). CONCLUSION: Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.


Assuntos
Liofilização/métodos , Pulmão/virologia , Terapia por Fagos/métodos , Podoviridae/patogenicidade , Infecções por Pseudomonas/terapia , Pseudomonas/virologia , Infecções Respiratórias/terapia , Administração por Inalação , Aerossóis , Leucina/química , Pulmão/microbiologia , Manitol/química , Viabilidade Microbiana , Nebulizadores e Vaporizadores , Pós , Pseudomonas/patogenicidade , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/virologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Trealose/química , Ultrassom
7.
Pharm Res ; 32(7): 2173-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25585954

RESUMO

The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allows a timely supplying of phage therapy products for 'personalized therapy' or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.


Assuntos
Infecções Bacterianas , Bacteriófagos/crescimento & desenvolvimento , Terapia Biológica , Farmacorresistência Bacteriana Múltipla , Infecções Bacterianas/microbiologia , Infecções Bacterianas/terapia , Bacteriófagos/isolamento & purificação , Terapia Biológica/efeitos adversos , Terapia Biológica/normas , Terapia Biológica/tendências , Humanos
8.
Arch Virol ; 157(10): 2035-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22707043

RESUMO

We suggest a bacteriophage genus, "Viunalikevirus", as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Myoviridae/classificação , Myoviridae/genética , Bacteriófagos/ultraestrutura , Colífagos/classificação , Colífagos/genética , Colífagos/ultraestrutura , Genoma Viral , Glicosídeo Hidrolases , Myoviridae/ultraestrutura , Filogenia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética
9.
Eur J Pharm Biopharm ; 177: 1-8, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671913

RESUMO

Bacteriophage (phage) therapy is a promising treatment strategy to combat antibiotic-resistant bacteria. Clinical reports from a century ago, as well as recent reports have revealed safety and efficacy of phage therapy for bacterial wound infections. However, the conventional liquid phage formulation and delivery platforms reported lack of dose control as it easily runs off from the infection site and it is impossible to determine total volume transfer. The aim of this study was to formulate phage liquids for topical delivery using a metered-dose spray. Two types of anti-Pseudomonas phages, PEV1 (myovirus) and PEV31 (podovirus) were formulated in 35% ethanol in water containing non-ionic polymers. The formulations were evaluated for physical properties, ease of spray, dripping upon spraying, drying time, in vitro release profiles, antibacterial activity, and storage stability. The optimized phage-polymer spray formulations were easily sprayable with minimal dripping and fast drying time. Phages were rapidly released from the formulation and inhibited the growth of Pseudomonas aeruginosa. Both PEV1 and PEV31 remained biologically stable in the optimized formulations during storage at 4 °C for eight weeks. This study showed the topical spray formulations containing non-ionic polymers in ethanol/water could be a promising and innovative therapeutic system for delivering phages.


Assuntos
Infecções Bacterianas , Bacteriófagos , Antibacterianos/farmacologia , Etanol , Humanos , Polímeros , Pós/farmacologia , Pseudomonas aeruginosa , Água
10.
Clin Microbiol Infect ; 28(7): 983-989, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35123053

RESUMO

OBJECTIVES: Inhaled phage therapy has been revisited as a potential treatment option for respiratory infections caused by multidrug-resistant Pseudomonas aeruginosa; however, there is a distinct gap in understanding the dose-response effect. The aim of this study was to investigate the dose-response effect of Pseudomonas-targeting phage PEV31 delivered by the pulmonary route in a mouse lung infection model. METHODS: Neutropenic BALB/c mice were infected with multidrug-resistant P. aeruginosa (2 × 104 colony-forming units) through the intratracheal route and then treated with PEV31 at three different doses of 7.5 × 104 (Group A), 5 × 106 (Group B), and 5 × 108 (Group C) plaque-forming units, or phosphate-buffered saline at 2 hours postinoculation. Mice (n = 5-7) were euthanized at 2 hours and 24 hours postinfection, and lungs, kidneys, spleen, liver, bronchoalveolar lavage fluid, and blood were collected for bacteria and phage enumeration. RESULTS: At 24 hours postinfection, all phage-treated groups exhibited a significant reduction in pulmonary bacterial load by 1.3-1.9 log10, independent of the delivered phage dose. The extent of phage replication was negatively correlated with the dose administered, with log10 titre increases of 6.2, 2.7, and 9 for Groups A, B, and C, respectively. Phage-resistant bacterial subpopulations in the lung homogenate samples harvested at 24 hours postinfection increased with the treatment dose (i.e. 30%, 74%, and 91% in respective Groups A-C). However, the mutants showed increased susceptibility to ciprofloxacin, impaired twitching motility, and reduced blue-green pigment production. The expression of the inflammatory cytokines (IL-1ß and IL-6, and TNF-α) was suppressed with increasing PEV31 treatment dose. DISCUSSION: This study provides the dose-response effect of inhaled phage therapy that may guide dose selection for treating P. aeruginosa respiratory infections in humans.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções por Pseudomonas , Infecções Respiratórias , Animais , Modelos Animais de Doenças , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Infecções Respiratórias/terapia
11.
Virol J ; 8: 430, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21899740

RESUMO

Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3H-thymidine (3H-dThd) into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage φW-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra).


Assuntos
Colífagos , Escherichia coli O157/virologia , Genoma Viral , Proteínas Virais/genética , Animais , Evolução Biológica , Bovinos , Colífagos/química , Colífagos/classificação , Colífagos/genética , Colífagos/metabolismo , Biologia Computacional , Impressões Digitais de DNA , Escherichia coli O157/fisiologia , Microscopia Eletrônica de Transmissão , Filogenia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Análise de Sequência de DNA , Timidina/análise , Timidina/metabolismo , Trítio/análise , Trítio/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
12.
Int J Pharm ; 596: 120200, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486032

RESUMO

Phage cocktail broadens the host range compared with a single phage and minimizes the development of phage-resistant bacteria thereby promoting the long-term usefulness of inhaled phage therapy. In this study, we produced a phage cocktail powder by spray drying three Pseudomonas phages PEV2 (podovirus), PEV1 and PEV20 (both myovirus) with lactose (80 wt%) and leucine (20 wt%) as excipients. Our results showed that the phages remained viable in the spray dried powder, with little to mild titer reduction (ranging from 0.11 to 1.3 logs) against each of their specific bacterial strains. The powder contained spherical particles with a small volume median diameter of 1.9 µm (span 1.5), a moisture content of 3.5 ± 0.2 wt%., and was largely amorphous with some crystalline peaks, which were assigned to the excipient leucine, as shown in the X-ray diffraction pattern. When the powder was dispersed using the low- and high-resistance Osmohalers, the fine particle fraction (FPF, wt. % of particles < 5 µm in the aerosols relative to the loaded dose) values were 45.37 ± 0.27% and 62.69 ± 2.1% at the flow rate of 100 and 60 L/min, respectively. In conclusion, the PEV phage cocktail powder produced was stable, inhalable and efficacious in vitro against various MDR P. aeruginosa strains that cause pulmonary infections. This formulation will broaden the bactericidal spectrum and reduce the emergence of resistance in bacteria compared with single-phage formulations reported previously.


Assuntos
Bacteriófagos , Infecções Respiratórias , Administração por Inalação , Aerossóis/uso terapêutico , Inaladores de Pó Seco , Humanos , Tamanho da Partícula , Pós/uso terapêutico , Pseudomonas aeruginosa , Infecções Respiratórias/tratamento farmacológico
13.
Int J Pharm ; 605: 120850, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216771

RESUMO

Hydrogel is an attractive delivery vehicle for phages as it keeps the wound moist, acts as a protective barrier and facilitates wound healing process. The aim of this study was to formulate biologically stable phage hydrogels that enable controlled release of infective phages. Pseudomonas-targeting phages, PEV1 (myovirus) and PEV31 (podovirus) were formulated in hydrogels (109 PFU/g) consisting of non-ionic polymers, including hydroxyethyl cellulose (HEC), hydroxypropyl methylcellulose (HPMC), polyethylene oxide (PEO), polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC) and polyvinylpyrrolidone (PVP). The formulations were evaluated for physical properties, in vitro release profiles, antibacterial activity, and storage stability. Controlled release of phages was observed in 7.5% PEO, 20% PVA and 75% PVP hydrogels with >108 PFU release within 8 h. Poor phage release (7 × 105-4 × 107 PFU) was observed in 5% HPMC, 5% HEC and 30% HPC gels. The biostability of the optimized hydrogels was phage-specific with less titer loss observed for PEV1 (0-0.8 log) than for PEV31 (0.3-1.4 log). Both phages remained stable in PEO, PVA and HPMC hydrogels with <1 log titer reductions when stored at 5 °C. This study showed that 7.5% PEO and 20% PVA hydrogel formulations could be promising therapeutic systems for delivering phages for the treatment of wound infections.


Assuntos
Bacteriófagos , Infecção dos Ferimentos , Humanos , Hidrogéis , Polímeros , Álcool de Polivinil , Cicatrização
14.
Eur J Pharm Biopharm ; 158: 166-171, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33253892

RESUMO

Combination treatment using bacteriophage and antibiotics is potentially an advanced approach to combatting antimicrobial-resistant bacterial infections. We have recently developed an inhalable powder by co-spray drying Pseudomonas phage PEV20 with ciprofloxacin. The purpose of this study was to assess the in vivo effect of the powder using a neutropenic mouse model of acute lung infection. The synergistic activity of PEV20 and ciprofloxacin was investigated by infecting mice with P. aeruginosa, then administering freshly spray-dried single PEV20 (106 PFU/mg), single ciprofloxacin (0.33 mg/mg) or combined PEV20-ciprofloxacin treatment using a dry powder insufflator. Lung tissues were then harvested for colony counting and flow cytometry analysis at 24 h post-treatment. PEV20 and ciprofloxacin combination powder significantly reduced the bacterial load of clinical P. aeruginosa strain in mouse lungs by 5.9 log10 (p < 0.005). No obvious reduction in the bacterial load was observed when the animals were treated only with PEV20 or ciprofloxacin. Assessment of immunological responses in the lungs showed reduced inflammation associating with the bactericidal effect of the PEV20-ciprofloxacin powder. In conclusion, this study has demonstrated the synergistic potential of using the combination PEV20-ciprofloxacin powder for P. aeruginosa respiratory infections.


Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Pneumonia Bacteriana/terapia , Infecções por Pseudomonas/terapia , Administração por Inalação , Animais , Carga Bacteriana/efeitos dos fármacos , Terapia Combinada/métodos , Inaladores de Pó Seco , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Terapia por Fagos , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/microbiologia , Pós , Estudo de Prova de Conceito , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/virologia
15.
Foodborne Pathog Dis ; 7(7): 851-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20230290

RESUMO

Salmonella is one of the leading causes of human foodborne illness and is associated with swine production. Bacteriophages are naturally occurring viruses that prey on bacteria and have been suggested as a potential intervention strategy to reduce Salmonella levels in food animals on the farm and in the lairage period. If phages are to be used to improve food safety, then we must understand the incidence and natural ecology of both phages and their hosts in the intestinal environment. This study investigates the incidence of phages that are active against Salmonella spp. in the feces of commercial finishing swine. Fecal samples (n = 60) were collected from each of 10 commercial swine finishing operations. Samples were collected from 10 randomly selected pens throughout each operation; a total of 600 fecal samples were collected. Salmonella spp. were found in 7.3% (44/600) of the fecal samples. Bacteriophages were isolated from fecal samples through two parallel methods: (1) initial enrichment in Salmonella Typhimurium; (2) initial enrichment in Escherichia coli B (an indicator strain), followed by direct spot testing against Salmonella Typhimurium. Bacteriophages active against Salmonella Typhimurium were isolated from 1% (6/600) of the individual fecal samples when initially enriched in Salmonella Typhimurium, but E. coli B-killing phages were isolated from 48.3% (290/600) of the fecal samples and only two of these phages infected Salmonella Typhimurium on secondary plating. Collectively, our results indicate that bacteriophages are widespread in commercial swine, but those capable of killing Salmonella Typhimurium may be present at relatively low population levels. These results indicate that phages (predator) populations may vary along with Salmonella (prey) populations; and that phages could potentially be used as a food safety pathogen reduction strategy in swine.


Assuntos
Criação de Animais Domésticos/métodos , Fezes/virologia , Fagos de Salmonella/isolamento & purificação , Salmonella/virologia , Sus scrofa/virologia , Testes de Aglutinação , Animais , Colífagos/crescimento & desenvolvimento , Colífagos/isolamento & purificação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Fezes/microbiologia , Viabilidade Microbiana , Controle Biológico de Vetores/métodos , Salmonella/classificação , Salmonella/crescimento & desenvolvimento , Salmonella/isolamento & purificação , Intoxicação Alimentar por Salmonella/prevenção & controle , Fagos de Salmonella/crescimento & desenvolvimento , Salmonella typhimurium/classificação , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/virologia , Sorotipagem , Especificidade da Espécie , Sus scrofa/microbiologia , Ensaio de Placa Viral
16.
Int J Pharm ; 591: 119952, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059012

RESUMO

Novel inhalable and synergistic combination powder formulations of phage PEV20 and ciprofloxacin were recently developed to treat Pseudomonas aeruginosa respiratory infections. In the present study, we investigated the storage stability of these powders which comprised ciprofloxacin, lactose and L-leucine in mass ratios of 1:1:1 (Formulation A) or ciprofloxacin and L-leucine in 2:1 without lactose (Formulation B). These powders were produced by spray drying, collected in polypropylene tubes and packed inside aluminium pouches which were heat-sealed at < 20% relative humidity (RH), then stored at 4 °C or 25 °C. The phage viability, aerosol performance and solid-state properties of the powders were examined over 12 months. The biological activity and aerosol performance of both formulations showed no significant change over 12 months of storage at 4 °C. However, after four months of storage at 25 °C, a significant titer loss of 2.2 log10 (p < 0.01) was observed in Formulation B, but the loss in Formulation A was much less (0.5 log10 (p < 0.05)). In contrast, the fine particle fraction (FPF, wt. % particles ≤ 5 µm) of Formulation A was significantly reduced by 11% (p < 0.05) after four months of storage at 25 °C, whereas the aerosol performance of Formulation B remained stable over 12 months. The results showed that ciprofloxacin can sufficiently stabilize phage through vitrification and/or hydrogen bonding at 4 °C. The presence of lactose was beneficial to preserve the phage at 25 °C. In conclusion, spray dried PEV20-ciprofloxacin combination powders were biologically and physico-chemically stable even without lactose as a stabilising excipient, when stored below 20% RH at 4 °C for 12 months.


Assuntos
Bacteriófagos , Infecções Respiratórias , Administração por Inalação , Aerossóis/uso terapêutico , Ciprofloxacina/uso terapêutico , Inaladores de Pó Seco , Humanos , Tamanho da Partícula , Pós/uso terapêutico , Pseudomonas aeruginosa , Infecções Respiratórias/tratamento farmacológico
17.
Bioeng Transl Med ; 5(2): e10159, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440564

RESUMO

Recent heightened interest in inhaled bacteriophage (phage) therapy for combating antibacterial resistance in pulmonary infections has led to the development of phage powder formulations. Although phages have been successfully bioengineered into inhalable powders with preserved bioactivity, the stabilization mechanism is yet unknown. This paper reports the first study investigating the stabilization mechanism for phages in these powders. Proteins and other biologics are known to be preserved in dry state within a glassy sugar matrix at storage temperatures (T s) at least ~50°C below the glass transition temperature (T g). This is because at (T g - T s) >50°C, molecules are sufficiently immobilized with reduced reactivity. We hypothesized that this glass stabilization mechanism may also be applicable to phages comprising mostly of proteins. In this study, spray dried powders of Pseudomonas phage PEV20 containing lactose and leucine as excipients were stored at 5, 25 or 50°C and 15 or 33% relative humidity (RH), followed by assessment of bioactivity (PEV20 stability) and physical properties. PEV20 was stable with negligible titer loss after storage at 5°C/15% RH for 250 days, while storage at 33% RH caused increased titer losses of 1 log10 and 3 log10 at 5 and 25°C, respectively. The plasticizing effect of water at 33% RH lowered the T g by 30°C, thus narrowing the gap between T s and T g to 19-28°C, which was insufficient for glass stabilization. In contrast, the (T g - T s) values were higher (range, 46-65°C) under the drier condition of 15% RH, resulting in the improved stability which corroborated with the vitrification hypothesis. Furthermore, phage remained stable (≤1 log10) when the (T g - T s) value lay between 26-48°C, but became inactivated as the value fell below 20°C. In conclusion, this study demonstrated that phage can be sufficiently stabilized in spray dried powders by keeping the (T g - T s) value above 46°C, thus supporting the vitrification hypothesis that phages are stabilized by immobilization inside a rigid glassy sugar matrix. These findings provide a guide to better manufacture and storage practices of inhaled phage powder products using for translational medicines.

18.
Methods Mol Biol ; 501: 141-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19066818

RESUMO

The host range of a bacteriophage is defined by what bacterial genera, species and strains it can lyse; it is one of the defining biological characteristics of a particular bacterial virus. Because of host factors such as masking by O antigens that affects injection and the presence of restriction endonucleases, the relative efficiency of plating (EOP), that is, the titer of the phage on a given bacterial cell line compared to the maximum titer observed, may vary considerably. This chapter describes rapid procedures for determining the host range and relative EOP on each host of any phage.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Bactérias/classificação , Bacteriófagos/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Ensaio de Placa Viral
19.
Eur J Pharm Biopharm ; 142: 543-552, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31398437

RESUMO

Recently we showed that nebulized ciprofloxacin and phage PEV20 in combination had a synergistic bactericidal effect against antibiotic-resistant Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Compared to nebulization, dry powders for inhalation may improve patient handling characteristics and compliance. In the present study, we co-spray dried ciprofloxacin and phage PEV20 using L-leucine with or without lactose as excipients. Two formulations were identified for testing in this study. The mass ratios were set at 1:1:1 for ciprofloxacin, lactose and L-leucine (Formulation A) or 2:1 for ciprofloxacin and L-leucine without lactose (Formulation B). Concentrations of PEV20 were set at 108 and 109 PFU/mL for two clinical P. aeruginosa strains FADD1-PA001 and JIP865, respectively. Formulations A and B were characterized as partially crystalline and the powders recrystallized at >40% relative humidity (RH). Both formulations exhibited strong synergistic antimicrobial killing effect on the two strains. Formulations A and B maintained bactericidal synergy after dispersion using both low and high resistance Osmohaler™. Powder aerosol performance was examined by next generation impactor (NGI) in low resistance inhaler at 100 L/min and by multi-stage liquid impinger (MSLI) in high resistance inhaler at 60 L/min. Fine particle fractions (FPF) obtained by NGI were 59.7 ±â€¯2.1% and 64.3 ±â€¯2.9% for A and B, respectively. FPF obtained by MSLI were 71.0 ±â€¯3.4% and 73.3 ±â€¯5.0%, respectively. In conclusion, it is feasible to prepare stable and inhalable combination powder formulations of phage PEV20 and ciprofloxacin for potential treatment of respiratory infections caused by multi-drug resistant (MDR) P. aeruginosa.


Assuntos
Bacteriófagos/classificação , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Pós/química , Infecções Respiratórias/tratamento farmacológico , Administração por Inalação , Aerossóis/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Química Farmacêutica/métodos , Fibrose Cística/microbiologia , Inaladores de Pó Seco/métodos , Excipientes/química , Humanos , Lactose/química , Nebulizadores e Vaporizadores , Tamanho da Partícula , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos
20.
AAPS J ; 21(3): 49, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949776

RESUMO

Antibiotic resistance in Pseudomonas aeruginosa biofilms necessitates the need for novel antimicrobial therapy with anti-biofilm properties. Bacteriophages (phages) are recognized as an ideal biopharmaceutical for combating antibiotic-resistant bacteria especially when used in combination with antibiotics. However, previous studies primarily focused on using phages against of P. aeruginosa biofilms of laboratory strains. In the present study, biofilms of six P. aeruginosa isolated from cystic fibrosis and wound patients, and one laboratory strain was treated singly and with combinations of anti-Pseudomonas phage PEV20 and ciprofloxacin. Of these strains, three were highly susceptible to the phage, while one was partially resistant and one was completely resistant. Combination treatment with PEV20 and ciprofloxacin enhanced biofilm eradication compared with single treatment. Phage and ciprofloxacin synergy was found to depend on phage-resistance profile of the target bacteria. Furthermore, phage and ciprofloxacin combination formulation protected the lung epithelial and fibroblast cells from P. aeruginosa and promoted cell growth. The results demonstrated that thorough screening of phage-resistance is crucial for designing phage-antibiotic formulation. The addition of highly effective phage could reduce the ciprofloxacin concentration required to combat P. aeruginosa infections associated with biofilm in cystic fibrosis and wound patients.


Assuntos
Antibacterianos/administração & dosagem , Terapia Biológica/métodos , Fibrose Cística/terapia , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas , Pseudomonas aeruginosa/virologia , Infecção dos Ferimentos/terapia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Ciprofloxacina/administração & dosagem , Terapia Combinada , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa