Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146589

RESUMO

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Ornitina Carbamoiltransferase , Humanos , Substituição de Aminoácidos , Hiperamonemia/etiologia , Hiperamonemia/genética , Mutação de Sentido Incorreto/genética , Ornitina Carbamoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia
2.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37812589

RESUMO

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Assuntos
Encefalopatias , Microcefalia , Humanos , Criança , Saccharomyces cerevisiae/genética , Encefalopatias/genética , Microcefalia/genética , Genótipo , Serina
3.
Circulation ; 148(4): 327-335, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37264936

RESUMO

BACKGROUND: Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments. METHODS: We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve. RESULTS: Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock (P<0.001). In the 275 test patients, the area under the receiver operating characteristic curve for predicting refractory VF was 0.85 (95% CI, 0.79-0.89), with specificity of 91%, sensitivity of 63%, and a positive likelihood ratio of 6.7. CONCLUSIONS: A machine learning algorithm using ECGs surrounding the initial shock predicts patients likely to experience refractory VF, and could enable rescuers to preemptively target interventions to potentially improve resuscitation outcome.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Humanos , Feminino , Masculino , Parada Cardíaca Extra-Hospitalar/diagnóstico , Parada Cardíaca Extra-Hospitalar/terapia , Parada Cardíaca Extra-Hospitalar/complicações , Cardioversão Elétrica/efeitos adversos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/terapia , Fibrilação Ventricular/complicações , Estudos de Coortes , Reanimação Cardiopulmonar/efeitos adversos
4.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931510

RESUMO

The estimation of spatiotemporal data from limited sensor measurements is a required task across many scientific disciplines. In this paper, we consider the use of mobile sensors for estimating spatiotemporal data via Kalman filtering. The sensor selection problem, which aims to optimize the placement of sensors, leverages innovations in greedy algorithms and low-rank subspace projection to provide model-free, data-driven estimates. Alternatively, Kalman filter estimation balances model-based information and sparsely observed measurements to collectively make better estimation with limited sensors. It is especially important with mobile sensors to utilize historical measurements. We show that mobile sensing along dynamic trajectories can achieve the equivalent performance of a larger number of stationary sensors, with performance gains related to three distinct timescales: (i) the timescale of the spatiotemporal dynamics, (ii) the velocity of the sensors, and (iii) the rate of sampling. Taken together, these timescales strongly influence how well-conditioned the estimation task is. We draw connections between the Kalman filter performance and the observability of the state space model and propose a greedy path planning algorithm based on minimizing the condition number of the observability matrix. This approach has better scalability and computational efficiency compared to previous works. Through a series of examples of increasing complexity, we show that mobile sensing along our paths improves Kalman filter performance in terms of better limiting estimation and faster convergence. Moreover, it is particularly effective for spatiotemporal data that contain spatially localized structures, whose features are captured along dynamic trajectories.

5.
PLoS Comput Biol ; 18(9): e1010512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36166481

RESUMO

Insect flight is a strongly nonlinear and actuated dynamical system. As such, strategies for understanding its control have typically relied on either model-based methods or linearizations thereof. Here we develop a framework that combines model predictive control on an established flight dynamics model and deep neural networks (DNN) to create an efficient method for solving the inverse problem of flight control. We turn to natural systems for inspiration since they inherently demonstrate network pruning with the consequence of yielding more efficient networks for a specific set of tasks. This bio-inspired approach allows us to leverage network pruning to optimally sparsify a DNN architecture in order to perform flight tasks with as few neural connections as possible, however, there are limits to sparsification. Specifically, as the number of connections falls below a critical threshold, flight performance drops considerably. We develop sparsification paradigms and explore their limits for control tasks. Monte Carlo simulations also quantify the statistical distribution of network weights during pruning given initial random weights of the DNNs. We demonstrate that on average, the network can be pruned to retain a small amount of original network weights and still perform comparably to its fully-connected counterpart. The relative number of remaining weights, however, is highly dependent on the initial architecture and size of the network. Overall, this work shows that sparsely connected DNNs are capable of predicting the forces required to follow flight trajectories. Additionally, sparsification has sharp performance limits.


Assuntos
Insetos , Redes Neurais de Computação , Animais
6.
J Electrocardiol ; 80: 11-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37086596

RESUMO

BACKGROUND: Prompt defibrillation is key to successful resuscitation from ventricular fibrillation out-of-hospital cardiac arrest (VF-OHCA). Preliminary evidence suggests that the timing of shock relative to the amplitude of the VF ECG waveform may affect the likelihood of resuscitation. We investigated whether the VF waveform amplitude at the time of shock (instantaneous amplitude) predicts outcome independent of other validated waveform measures. METHODS: We conducted a retrospective study of VF-OHCA patients ≥18 old. We evaluated three VF waveform measures for each shock: instantaneous amplitude at the time of shock, and maximum amplitude and amplitude spectrum area (AMSA) over a 3-s window preceding the shock. Linear mixed-effects modeling was used to determine whether instantaneous amplitude was associated with shock-specific return of organized rhythm (ROR) or return of spontaneous circulation (ROSC) independent of maximum amplitude or AMSA. RESULTS: The 566 eligible patients received 1513 shocks, resulting in ROR of 62.0% (938/1513) and ROSC of 22.3% (337/1513). In unadjusted regression, an interquartile increase in instantaneous amplitude was associated with ROR (Odds ratio [OR] [95% confidence interval] = 1.27 [1.11-1.45]) and ROSC (OR = 1.27 [1.14-1.42]). However, instantaneous amplitude was not associated with ROR (OR = 1.13 [0.97-1.30]) after accounting for maximum amplitude, nor with ROR (OR = 1.00 [0.87-1.15]) or ROSC (OR = 1.05 [0.93-1.18]) after accounting for AMSA. By contrast, AMSA and maximum amplitude remained independently associated with ROR and ROSC. CONCLUSIONS: We did not observe an independent association between instantaneous amplitude and shock-specific outcomes. Efforts to time shock to the maximal amplitude of the VF waveform are unlikely to affect resuscitation outcome.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Humanos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/terapia , Fibrilação Ventricular/complicações , Reanimação Cardiopulmonar/métodos , Cardioversão Elétrica , Parada Cardíaca Extra-Hospitalar/terapia , Estudos Retrospectivos , Amsacrina , Eletrocardiografia/métodos
7.
Opt Express ; 30(16): 28454-28469, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299040

RESUMO

A two-dimensional theoretical model is constructed to describe optical mode-locking (ML) in quadratically nonlinear waveguide arrays (QWGAs). Steady-state solutions of the considered model are obtained by a modified pseudo-spectral renormalization algorithm, and the mode-locking dynamics of the model are investigated through direct simulation of the nonlinear evolution and a linear stability analysis of the solutions. It is shown that stable mode-locking of elliptic steady-state solutions in quadratically nonlinear waveguide arrays are possible for a wide range of parameters, suggesting that quadratically nonlinear materials are well suited for producing stable mode-locked states for a wide range of applications.

8.
Philos Trans A Math Phys Eng Sci ; 380(2229): 20210199, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35719072

RESUMO

Dynamic mode decomposition (DMD) provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of temporal, or spatio-temporal, data. A variety of regression techniques have been developed for producing the linear model approximation whose solutions are exponentials in time. For spatio-temporal data, DMD provides low-rank and interpretable models in the form of dominant modal structures along with their exponential/oscillatory behaviour in time. The majority of DMD algorithms, however, are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities. The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities. Here, the optimized DMD algorithm is improved by using statistical bagging methods whereby a single set of snapshots is used to produce an ensemble of optimized DMD models. The outputs of these models are averaged to produce a bagging, optimized dynamic mode decomposition (BOP-DMD). BOP-DMD improves performance by stabilizing and cross-validating the DMD model by ensembling; it also robustifies the model and provides both spatial and temporal uncertainty quantification (UQ). Thus, unlike currently available DMD algorithms, BOP-DMD provides a stable and robust model for probabilistic, or Bayesian, forecasting with comprehensive UQ metrics. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.

9.
Philos Trans A Math Phys Eng Sci ; 380(2229): 20210200, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35719073

RESUMO

Nonlinear differential equations rarely admit closed-form solutions, thus requiring numerical time-stepping algorithms to approximate solutions. Further, many systems characterized by multiscale physics exhibit dynamics over a vast range of timescales, making numerical integration expensive. In this work, we develop a hierarchy of deep neural network time-steppers to approximate the dynamical system flow map over a range of time-scales. The model is purely data-driven, enabling accurate and efficient numerical integration and forecasting. Similar ideas can be used to couple neural network-based models with classical numerical time-steppers. Our hierarchical time-stepping scheme provides advantages over current time-stepping algorithms, including (i) capturing a range of timescales, (ii) improved accuracy in comparison with leading neural network architectures, (iii) efficiency in long-time forecasting due to explicit training of slow time-scale dynamics, and (iv) a flexible framework that is parallelizable and may be integrated with standard numerical time-stepping algorithms. The method is demonstrated on numerous nonlinear dynamical systems, including the Van der Pol oscillator, the Lorenz system, the Kuramoto-Sivashinsky equation, and fluid flow pass a cylinder; audio and video signals are also explored. On the sequence generation examples, we benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing and clockwork RNN. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.

10.
Proc Natl Acad Sci U S A ; 116(45): 22445-22451, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636218

RESUMO

The discovery of governing equations from scientific data has the potential to transform data-rich fields that lack well-characterized quantitative descriptions. Advances in sparse regression are currently enabling the tractable identification of both the structure and parameters of a nonlinear dynamical system from data. The resulting models have the fewest terms necessary to describe the dynamics, balancing model complexity with descriptive ability, and thus promoting interpretability and generalizability. This provides an algorithmic approach to Occam's razor for model discovery. However, this approach fundamentally relies on an effective coordinate system in which the dynamics have a simple representation. In this work, we design a custom deep autoencoder network to discover a coordinate transformation into a reduced space where the dynamics may be sparsely represented. Thus, we simultaneously learn the governing equations and the associated coordinate system. We demonstrate this approach on several example high-dimensional systems with low-dimensional behavior. The resulting modeling framework combines the strengths of deep neural networks for flexible representation and sparse identification of nonlinear dynamics (SINDy) for parsimonious models. This method places the discovery of coordinates and models on an equal footing.

11.
Proc Natl Acad Sci U S A ; 120(12): e2300990120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36930603
12.
Neuroimage ; 202: 116116, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446126

RESUMO

The application of dynamic or time-varying connectivity techniques to neuroimaging data represents a new and complementary method to traditional static (time-averaged) methods, capturing additional patterns of variation in human brain function. Dynamic connectivity and related measures of brain dynamism have been detailed in neurotypical brain function, during human development and across neuropsychiatric disorders, and linked to cognitive control and executive function abilities. Despite this large and growing body of work, little is known about whether sex-related differences are present in dynamic connectivity and brain dynamism, a question pertinent to our understanding of brain function in both health and disease, given the sex bias observed in the prevalence of neuropsychiatric disorders, and well-demonstrated sex-related differences in the performance of certain neurocognitive tasks. We present the first analyses of sex-related effects in dynamic connectivity and brain dynamism referenced to neurocognitive function, in a large sample of sex-, age- and motion-matched subjects in 24- and 51-network whole brain functional parcellations. We demonstrate that sexual dimorphism is present in human dynamic connectivity and in multiple high-order measures of brain dynamism, as well as validating prior work that sex-related differences exist in static intrinsic connectivity. We also provide the first evidence suggesting a link between differential neurocognitive performance by males and females and brain functional dynamics. Reduced dynamism in females, who spend more time in certain brain states and switch states less frequently, may provide a 'stickier' functional substrate associated with slower response inhibition, whereas males exhibit greater dynamic fluidity, change between certain states more often and range over a larger state space, achieving superior performance in mental rotation, which demands an iterative visualization and problem-solving approach. We conclude that sex is an important variable to consider in functional MRI experiments and the analysis of dynamic connectivity and brain dynamism.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Caracteres Sexuais , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
13.
Kidney Int ; 96(3): 597-611, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200942

RESUMO

Podocytes are differentiated post-mitotic cells that cannot replace themselves after injury. Glomerular parietal epithelial cells are proposed to be podocyte progenitors. To test whether a subset of parietal epithelial cells transdifferentiate to a podocyte fate, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice, named PEC-PODO, were generated. Doxycycline administration permanently labeled parietal epithelial cells with tdTomato reporter (red), and upon doxycycline removal, the parietal epithelial cells (PECs) cannot label further. Despite the presence or absence of doxycycline, podocytes cannot label with tdTomato, but are constitutively labeled with an enhanced green fluorescent protein (EGFP) reporter (green). Only activation of the Nphs1-FLPo transgene by labeled parietal epithelial cells can generate a yellow color. At day 28 of experimental focal segmental glomerulosclerosis, podocyte density was 20% lower in 20% of glomeruli. At day 56 of experimental focal segmental glomerulosclerosis, podocyte density was 18% lower in 17% of glomeruli. TdTomato+ parietal epithelial cells were restricted to Bowman's capsule in healthy mice. However, by days 28 and 56 of experimental disease, two-thirds of tdTomato+ parietal epithelial cells within glomerular tufts were yellow in color. These cells co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of endothelial (ERG) or mesangial (Perlecan) cells. Expansion microscopy showed primary, secondary and minor processes in tdTomato+EGFP+ cells in glomerular tufts. Thus, our studies provide strong evidence that parietal epithelial cells serve as a source of new podocytes in adult mice.


Assuntos
Transdiferenciação Celular , Células Epiteliais/fisiologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/fisiologia , Animais , Modelos Animais de Doenças , Genes Reporter/genética , Glomerulosclerose Segmentar e Focal/terapia , Humanos , Microscopia Intravital , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteína Vermelha Fluorescente
14.
J Comput Neurosci ; 47(1): 1-16, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31165337

RESUMO

We introduce a computational model for the cellular level effects of firing rate filtering due to the major forms of neuronal injury, including demyelination and axonal swellings. Based upon experimental and computational observations, we posit simple phenomenological input/output rules describing spike train distortions and demonstrate that slow-gamma frequencies in the 38-41 Hz range emerge as the most robust to injury. Our signal-processing model allows us to derive firing rate filters at the cellular level for impaired neural activity with minimal assumptions. Specifically, we model eight experimentally observed spike train transformations by discrete-time filters, including those associated with increasing refractoriness and intermittent blockage. Continuous counterparts for the filters are also obtained by approximating neuronal firing rates from spike trains convolved with causal and Gaussian kernels. The proposed signal processing framework, which is robust to model parameter calibration, is an abstraction of the major cellular-level pathologies associated with neurodegenerative diseases and traumatic brain injuries that affect spike train propagation and impair neuronal network functionality. Our filters are well aligned with the spectrum of dynamic memory fields including working memory, visual consciousness, and other higher cognitive functions that operate in a frequency band that is - at a single cell level - optimally guarded against common types of pathological effects. In contrast, higher-frequency neural encoding, such as is observed with short-term memory, are susceptible to neurodegeneration and injury.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Simulação por Computador , Ritmo Gama/fisiologia , Modelos Neurológicos , Doenças Neurodegenerativas/fisiopatologia , Potenciais de Ação , Animais , Conscientização/fisiologia , Axônios/fisiologia , Transtornos Cognitivos/fisiopatologia , Estado de Consciência/fisiologia , Previsões , Hipocampo/fisiopatologia , Humanos , Memória de Curto Prazo/fisiologia , Ratos , Transmissão Sináptica/fisiologia , Visão Ocular/fisiologia
15.
Proc Natl Acad Sci U S A ; 113(15): 3932-7, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035946

RESUMO

Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

16.
Opt Express ; 26(14): 18563-18577, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114034

RESUMO

Kerr soliton frequency comb generation in monolithic microresonators recently attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates with smooth octave-spanning spectra for self-referencing. Such versatile platform finds significant applications in dual-comb spectroscopy, low-noise optical frequency synthesis, coherent communication systems, etc. However, it still remains challenging to straightforwardly and deterministically generate and sustain the single-soliton state in microresonators. In this paper, we propose and theoretically demonstrate the excitation of single-soliton Kerr frequency comb by seeding the continuous-wave driven nonlinear microcavity with a pulsed trigger. Unlike the mostly adopted frequency tuning scheme reported so far, we show that an energetic single shot pulse can trigger the single-soliton state deterministically without experiencing any unstable or chaotic states. Neither the pump frequency nor the cavity resonance is required to be tuned. The generated mode-locked single-soliton Kerr comb is robust and insensitive to perturbations. Even when the thermal effect induced by the absorption of the intracavity light is taken into account, the proposed single pulse trigger approach remains valid without requiring any thermal compensation means.

17.
PLoS Comput Biol ; 13(1): e1005261, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056097

RESUMO

Using a model for the dynamics of the full somatic nervous system of the nematode C. elegans, we address how biological network architectures and their functionality are degraded in the presence of focal axonal swellings (FAS) arising from neurodegenerative disease and/or traumatic brain injury. Using biophysically measured FAS distributions and swelling sizes, we are able to simulate the effects of injuries on the neural dynamics of C. elegans, showing how damaging the network degrades its low-dimensional dynamical responses. We visualize these injured neural dynamics by mapping them onto the worm's low-dimensional postures, i.e. eigenworm modes. We show that a diversity of functional deficits arise from the same level of injury on a connectomic network. Functional deficits are quantified using a statistical shape analysis, a procrustes analysis, for deformations of the limit cycles that characterize key behaviors such as forward crawling. This procrustes metric carries information on the functional outcome of injuries in the model. Furthermore, we apply classification trees to relate injury structure to the behavioral outcome. This makes testable predictions for the structure of an injury given a defined functional deficit. More critically, this study demonstrates the potential role of computational simulation studies in understanding how neuronal networks process biological signals, and how this processing is impacted by network injury.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma , Modelos Neurológicos , Rede Nervosa/lesões , Rede Nervosa/fisiopatologia , Animais , Biologia Computacional
18.
PLoS Comput Biol ; 13(1): e1005303, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076347

RESUMO

Using a computational model of the Caenorhabditis elegans connectome dynamics, we show that proprioceptive feedback is necessary for sustained dynamic responses to external input. This is consistent with the lack of biophysical evidence for a central pattern generator, and recent experimental evidence that proprioception drives locomotion. The low-dimensional functional response of the Caenorhabditis elegans network of neurons to proprioception-like feedback is optimized by input of specific spatial wavelengths which correspond to the spatial scale of real body shape dynamics. Furthermore, we find that the motor subcircuit of the network is responsible for regulating this response, in agreement with experimental expectations. To explore how the connectomic dynamics produces the observed two-mode, oscillatory limit cycle behavior from a static fixed point, we probe the fixed point's low-dimensional structure using Dynamic Mode Decomposition. This reveals that the nonlinear network dynamics encode six clusters of dynamic modes, with timescales spanning three orders of magnitude. Two of these six dynamic mode clusters correspond to previously-discovered behavioral modes related to locomotion. These dynamic modes and their timescales are encoded by the network's degree distribution and specific connectivity. This suggests that behavioral dynamics are partially encoded within the connectome itself, the connectivity of which facilitates proprioceptive control.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma , Retroalimentação Fisiológica/fisiologia , Locomoção/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Biologia Computacional , Propriocepção
19.
Brain Cogn ; 123: 154-164, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29597065

RESUMO

The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Modelos Neurológicos , Redes Neurais de Computação , Doenças Neurodegenerativas/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Cognição/fisiologia , Transtornos Cognitivos/etiologia , Humanos , Doenças Neurodegenerativas/complicações , Neurônios/fisiologia
20.
J Comput Neurosci ; 42(3): 323-347, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28393281

RESUMO

The presence of diffuse Focal Axonal Swellings (FAS) is a hallmark cellular feature in many neurological diseases and traumatic brain injury. Among other things, the FAS have a significant impact on spike-train encodings that propagate through the affected neurons, leading to compromised signal processing on a neuronal network level. This work merges, for the first time, three fields of study: (i) signal processing in excitatory-inhibitory (EI) networks of neurons via population codes, (ii) decision-making theory driven by the production of evidence from stimulus, and (iii) compromised spike-train propagation through FAS. As such, we demonstrate a mathematical architecture capable of characterizing compromised decision-making driven by cellular mechanisms. The computational model also leads to several novel predictions and diagnostics for understanding injury level and cognitive deficits, including a key finding that decision-making reaction times, rather than accuracy, are indicative of network level damage. The results have a number of translational implications, including that the level of network damage can be characterized by the reaction times in simple cognitive and motor tests.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Tomada de Decisões , Modelos Neurológicos , Tempo de Reação , Lesões Encefálicas , Humanos , Neurônios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa