Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(12): 5512-5523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478581

RESUMO

The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.


Assuntos
Monitoramento Ambiental , Ostreidae , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Humanos , Bromofeniramina/análise , China , Clorfeniramina/análise , Antagonistas dos Receptores Histamínicos/análise , Oceanos e Mares , Ostreidae/química , Preparações Farmacêuticas/análise , Prometazina/análise , Poluentes Químicos da Água/análise
2.
Int J Biol Macromol ; 278(Pt 1): 134667, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134189

RESUMO

Horseshoe crabs are living fossils. In recent decades, the population of horseshoe crabs, especially the tri-spine horseshoe crab Tachypleus tridentatus, has decreased significantly and was listed as an 'endangered species' under the IUCN Red List in 2019. In order to improve the reproduction of T. tridentatus to facilitate stock enhancement, it is important to understand their ovarian development. In this study, a novel TtVtg2-like gene from T. tridentatus was cloned and functionally characterized. The total legth of TtVtg2-like was 5469 bp, encoding a protein consisting of 1822 amino acid with a pI value of 6.51 and a molecular weight of 208.68 KDa. The TtVtg2-like was highly expressed in the ovary and yellow connective tissues, mainly localized in cytoplasm and endoplasmic reticulum vesicles of oocytes and yellow connective tissues, respectively. RNA interference of TtVtg2-like caused the accumulation of ROS, DNA damage, and apoptosis of ovarian primary cells. The results of this study provide useful baseline information for future studies on ovarian development in horseshoe crabs.

3.
Sci Total Environ ; 914: 169892, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211869

RESUMO

Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.


Assuntos
Bivalves , Plâncton , Animais , Humanos , Aquicultura , Pesqueiros , Peixes
4.
Vet Microbiol ; 289: 109961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147806

RESUMO

PhoB is a response regulator protein that plays a key role in the PhoBR two-component signal transduction system. In this study, we used transcriptome and proteomics techniques to evaluate the detect the gene network regulated by PhoB of Streptococcus agalactiae. The results showed that expression of biofilm formation and virulence-related genes were changed after phoB deficiency. Crystal violet and CLSM assay confirmed that the deletion of the phoB increased the thickness of S. agalactiae biofilm. The results of lacZ reporter and the bacterial one-hybridization method showed that PhoB could directly bind to the promoter regions of hemolysin A and ciaR genes but not to the promoter regions of cylE and hemolysin III. Through the construction of an 18-base pair deoxyribose nucleic acid (DNA) random fragment library and the bacterial one-hybridization system, it was found that the conservative sequence of PhoB binding was TTGGAGAA(G/T). Our research has uncovered the virulence potential of the PhoBR two-component system of S. agalactiae. The findings of this study provide the theoretical foundation for in-depth research on the pathogenic mechanism of S. agalactiae.


Assuntos
Proteínas Hemolisinas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes
5.
Mar Biotechnol (NY) ; 26(3): 575-587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676851

RESUMO

The vitellogenin present in the bloodstream undergoes internalization into developing oocytes through the vitellogenin receptor (VgR), a process mediated by receptor-mediated endocytosis. VgR plays a crucial role in facilitating the accumulation of vitellogenin and the maturation of oocytes. In this study, we characterized a Tachypleus tridentatus vitellogenin receptor (TtVgR) gene from the tri-spine horseshoe crab, revealing a length of 1956 bp and encoding 652 amino acid residues with 12 exons. TtVgR has a molecular weight of 64.26 kDa and an isoelectric point of 5.95. Predictions indicate 85 phosphorylation sites and 7 glycosylation sites within TtVgR. Transcriptional analysis demonstrated specific expression of TtVgR in the ovary and yellow connective tissue. TtVgR was identified and distributed in the plasma membrane of oocytes. The siRNA-mediated TtVgR knockdown significantly reduced the transcriptional activity of TtVgR. This depletion induced excessive ROS production, resulting in DNA damage in ovarian primary cells. TUNEL and flow cytometry analyses confirmed ovarian cell apoptosis following TtVgR knockdown, indicating DNA damage in ovarian primary cells. These findings underscore the importance of TtVgR in ovarian cell development, suggesting its potential involvement in vitellogenesis and oocyte maturation. This knowledge may inform innovative breeding strategies and contribute to the sustainable management and conservation of the tri-spine horseshoe crab.


Assuntos
Técnicas de Silenciamento de Genes , Caranguejos Ferradura , Ovário , RNA Interferente Pequeno , Receptores de Superfície Celular , Animais , Feminino , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Caranguejos Ferradura/genética , Caranguejos Ferradura/metabolismo , Apoptose/genética , Oócitos/metabolismo , Sequência de Aminoácidos , Espécies Reativas de Oxigênio/metabolismo , Filogenia , Proteínas do Ovo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa