Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 88(2): 770-786, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403247

RESUMO

PURPOSE: Respiration-related CSF flow through the cerebral aqueduct may be useful for elucidating physiology and pathophysiology of the glymphatic system, which has been proposed as a mechanism of brain waste clearance. Therefore, we aimed to (1) develop a real-time (CSF) flow imaging method with high spatial and sufficient temporal resolution to capture respiratory effects, (2) validate the method in a phantom setup and numerical simulations, and (3) apply the method in vivo and quantify its repeatability and correlation with different respiratory conditions. METHODS: A golden-angle radial flow sequence (reconstructed temporal resolution 168 ms, spatial resolution 0.6 mm) was implemented on a 7T MRI scanner and reconstructed using compressed sensing. A phantom setup mimicked simultaneous cardiac and respiratory flow oscillations. The effect of temporal resolution and vessel diameter was investigated numerically. Healthy volunteers (n = 10) were scanned at four different respiratory conditions, including repeat scans. RESULTS: Phantom data show that the developed sequence accurately quantifies respiratory oscillations (ratio real-time/reference QR  = 0.96 ± 0.02), but underestimates the rapid cardiac oscillations (ratio QC  = 0.46 ± 0.14). Simulations suggest that QC can be improved by increasing temporal resolution. In vivo repeatability was moderate to very strong for cranial and caudal flow (intraclass correlation coefficient range: 0.55-0.99) and weak to strong for net flow (intraclass correlation coefficient range: 0.48-0.90). Net flow was influenced by respiratory condition (p < 0.01). CONCLUSIONS: The presented real-time flow MRI method can quantify respiratory-related variations of CSF flow in the cerebral aqueduct, but it underestimates rapid cardiac oscillations. In vivo, the method showed good repeatability and a relationship between flow and respiration.


Assuntos
Aqueduto do Mesencéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Respiração
2.
Acta Neuropathol Commun ; 10(1): 51, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410629

RESUMO

Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias , Oxigênio/metabolismo , Medula Espinal/metabolismo
3.
J Cereb Blood Flow Metab ; 41(9): 2137-2149, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33461408

RESUMO

Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-ß from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.


Assuntos
Encéfalo/patologia , Sistema Glinfático/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/terapia , Humanos , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa