Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 610(7932): 540-546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198788

RESUMO

The spread of antibiotic resistance is attracting increased attention to combination-based treatments. Although drug combinations have been studied extensively for their effects on bacterial growth1-11, much less is known about their effects on bacterial long-term clearance, especially at cidal, clinically relevant concentrations12-14. Here, using en masse microplating and automated image analysis, we systematically quantify Staphylococcus aureus survival during prolonged exposure to pairwise and higher-order cidal drug combinations. By quantifying growth inhibition, early killing and longer-term population clearance by all pairs of 14 antibiotics, we find that clearance interactions are qualitatively different, often showing reciprocal suppression whereby the efficacy of the drug mixture is weaker than any of the individual drugs alone. Furthermore, in contrast to growth inhibition6-10 and early killing, clearance efficacy decreases rather than increases as more drugs are added. However, specific drugs targeting non-growing persisters15-17 circumvent these suppressive effects. Competition experiments show that reciprocal suppressive drug combinations select against resistance to any of the individual drugs, even counteracting methicillin-resistant Staphylococcus aureus both in vitro and in a Galleria mellonella larva model. As a consequence, adding a ß-lactamase inhibitor that is commonly used to potentiate treatment against ß-lactam-resistant strains can reduce rather than increase treatment efficacy. Together, these results underscore the importance of systematic mapping the long-term clearance efficacy of drug combinations for designing more-effective, resistance-proof multidrug regimes.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Staphylococcus aureus , Humanos , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Combinação de Medicamentos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico
2.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718533

RESUMO

Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.


Assuntos
Antibacterianos , Transcriptoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/genética , Farmacorresistência Bacteriana/genética
3.
Mol Biol Evol ; 36(8): 1601-1611, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058961

RESUMO

Multidrug-resistant clinical isolates are common in certain pathogens, but rare in others. This pattern may be due to the fact that mutations shaping resistance have species-specific effects. To investigate this issue, we transferred a range of resistance-conferring mutations and a full resistance gene into Escherichia coli and closely related bacteria. We found that resistance mutations in one bacterial species frequently provide no resistance, in fact even yielding drug hypersensitivity in close relatives. In depth analysis of a key gene involved in aminoglycoside resistance (trkH) indicated that preexisting mutations in other genes-intergenic epistasis-underlie such extreme differences in mutational effects between species. Finally, reconstruction of adaptive landscapes under multiple antibiotic stresses revealed that mutations frequently provide multidrug resistance or elevated drug susceptibility (i.e., collateral sensitivity) only with certain combinations of other resistance mutations. We conclude that resistance and collateral sensitivity are contingent upon the genetic makeup of the bacterial population, and such contingency could shape the long-term fate of resistant bacteria. These results underlie the importance of species-specific treatment strategies.


Assuntos
Evolução Biológica , Farmacorresistência Bacteriana/genética , Transportadores de Cassetes de Ligação de ATP/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Aptidão Genética , Mutação , Canais de Potássio/genética , Salmonella enterica , Especificidade da Espécie
4.
PLoS Biol ; 15(5): e2000644, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28486496

RESUMO

Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.


Assuntos
Adaptação Biológica , Evolução Biológica , Farmacorresistência Fúngica/genética , Genes Fúngicos , Fenótipo , Mutação , Saccharomyces cerevisiae
6.
Proc Natl Acad Sci U S A ; 113(9): 2502-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884157

RESUMO

Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair in Escherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations in Salmonella enterica and E. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.


Assuntos
Bactérias/classificação , Engenharia Genética , Genoma Bacteriano , Mutação , Bactérias/genética
8.
PLoS Biol ; 12(8): e1001935, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25157590

RESUMO

Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies that gene content variation across species could be partly due to the action of compensatory evolution rather than the passive loss of genes.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Meio Ambiente , Epistasia Genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Aptidão Genética , Pleiotropia Genética , Variação Genética , Fenótipo , Transcriptoma/genética
9.
Proc Natl Acad Sci U S A ; 111(32): 11762-7, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071190

RESUMO

A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.


Assuntos
Evolução Biológica , Redes e Vias Metabólicas , Adaptação Fisiológica/genética , Simulação por Computador , Enzimas/genética , Enzimas/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Modelos Biológicos , Fenótipo
10.
Antimicrob Agents Chemother ; 58(8): 4573-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867991

RESUMO

Combination therapy is rarely used to counter the evolution of resistance in bacterial infections. Expansion of the use of combination therapy requires knowledge of how drugs interact at inhibitory concentrations. More than 50 years ago, it was noted that, if bactericidal drugs are most potent with actively dividing cells, then the inhibition of growth induced by a bacteriostatic drug should result in an overall reduction of efficacy when the drug is used in combination with a bactericidal drug. Our goal here was to investigate this hypothesis systematically. We first constructed time-kill curves using five different antibiotics at clinically relevant concentrations, and we observed antagonism between bactericidal and bacteriostatic drugs. We extended our investigation by performing a screen of pairwise combinations of 21 different antibiotics at subinhibitory concentrations, and we found that strong antagonistic interactions were enriched significantly among combinations of bacteriostatic and bactericidal drugs. Finally, since our hypothesis relies on phenotypic effects produced by different drug classes, we recreated these experiments in a microfluidic device and performed time-lapse microscopy to directly observe and quantify the growth and division of individual cells with controlled antibiotic concentrations. While our single-cell observations supported the antagonism between bacteriostatic and bactericidal drugs, they revealed an unexpected variety of cellular responses to antagonistic drug combinations, suggesting that multiple mechanisms underlie the interactions.


Assuntos
Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Citostáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Citostáticos/antagonistas & inibidores , Antagonismo de Drogas , Escherichia coli/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas , Análise de Célula Única , Imagem com Lapso de Tempo
11.
Mol Syst Biol ; 9: 700, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24169403

RESUMO

The evolution of resistance to a single antibiotic is frequently accompanied by increased resistance to multiple other antimicrobial agents. In sharp contrast, very little is known about the frequency and mechanisms underlying collateral sensitivity. In this case, genetic adaptation under antibiotic stress yields enhanced sensitivity to other antibiotics. Using large-scale laboratory evolutionary experiments with Escherichia coli, we demonstrate that collateral sensitivity occurs frequently during the evolution of antibiotic resistance. Specifically, populations adapted to aminoglycosides have an especially low fitness in the presence of several other antibiotics. Whole-genome sequencing of laboratory-evolved strains revealed multiple mechanisms underlying aminoglycoside resistance, including a reduction in the proton-motive force (PMF) across the inner membrane. We propose that as a side effect, these mutations diminish the activity of PMF-dependent major efflux pumps (including the AcrAB transporter), leading to hypersensitivity to several other antibiotics. More generally, our work offers an insight into the mechanisms that drive the evolution of negative trade-offs under antibiotic selection.


Assuntos
Antibacterianos/farmacologia , Evolução Biológica , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Genoma Bacteriano , Proteínas de Membrana Transportadoras/genética , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/metabolismo , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , Mutação , Seleção Genética
12.
Nat Commun ; 15(1): 5383, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918379

RESUMO

The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background. Here, we used the Microbial Evolution and Growth Arena (MEGA) plate to select ampicillin-resistant Escherichia coli mutants with varying degrees of resistance. Whole-genome sequencing of resistant isolates revealed that ampicillin resistance was acquired via a combination of single-point mutations and amplification of the gene encoding beta-lactamase AmpC. However, blocking AmpC-mediated resistance revealed latent adaptive pathways: strains deleted for ampC were able to adapt through combinations of changes in genes involved in multidrug resistance encoding efflux pumps, transcriptional regulators, and porins. Our results reveal that combinations of distinct genetic mutations, accessible at large population sizes, can drive high-level resistance to ampicillin even independently of beta-lactamases.


Assuntos
Resistência a Ampicilina , Ampicilina , Antibacterianos , Proteínas de Bactérias , Escherichia coli , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Resistência a Ampicilina/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Ampicilina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Evolução Molecular , Mutação
14.
Magy Onkol ; 57(2): 96-9, 2013 Jun.
Artigo em Húngaro | MEDLINE | ID: mdl-23795354

RESUMO

Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways in BRAF mutated melanomas. Using a data mining algorithm we also found a gene alteration signature in the MAPK pathway that was commonly related to the presence of BRAF mutation in our melanoma cohorts. The second aim of this study was to develop an accurate Q-PCR method for determining the co-amplification pattern of six candidate genes that reside in the 11q13 amplicon core. We found that co-amplification of these candidate genes or the CCND1 amplification along with either BRAF or NRAS mutations might be more important for prognosis than the presence of these alterations alone.


Assuntos
Ciclina D1/genética , GTP Fosfo-Hidrolases/genética , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Proteínas de Membrana/genética , Mutação , Reação em Cadeia da Polimerase/métodos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 7 , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Heterozigoto , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia
15.
Tumour Biol ; 33(6): 2189-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001925

RESUMO

It is well demonstrated that CCND1 amplification is a frequent event in the acral subtype of cutaneous malignant melanoma; however, its role in the other subtypes of the disease is still controversial. The objectives of this study were to evaluate genetic and expression alterations of CCND1 with a focus on primary cutaneous melanomas, to define BRAF and NRAS mutation status, and correlate the data with clinical-pathological parameters. CCND1 amplification was associated with ulceration and the localization of the metastasis. After correction for the mutation state of BRAF and NRAS genes, CCND1 amplification in samples without such mutations was associated with ulceration and sun exposure. The cyclin D1 (CCND1) mRNA level decreased in lesions with multiple metastases and was correlated with both the mRNA levels and mutation state of BRAF and NRAS genes. Primary melanomas with BRAF(V600) or NRAS(Q61 ) mutations exhibited lower CCND1 mRNA level. CCND1 protein expression was associated with Breslow thickness, metastasis formation, and shorter survival time. These observations suggest that CCND1 alterations are linked to melanoma progression and are modified by BRAF and NRAS mutations. Our data show that CCND1 amplification could have a prognostic relevance in cutaneous melanoma and highlight that altered CCND1 gene expression may influence the metastatic progression, survival, and the localization of metastases.


Assuntos
Ciclina D1/genética , Genes ras/genética , Melanoma/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Adulto , Hibridização Genômica Comparativa , Progressão da Doença , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Metástase Linfática , Masculino , Melanoma/mortalidade , Melanoma/secundário , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Adulto Jovem
16.
Mod Pathol ; 22(10): 1367-78, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19633643

RESUMO

Amplification of the 11q13 chromosomal region is a common event in primary melanomas. Several candidate genes are localized at this sequence; however, their role in melanoma has not been clearly defined. The aim of this study was to develop an accurate method for determining the amplification pattern of six candidate genes that map to this amplicon core and to elucidate the possible relationship between BRAF, NRAS mutations and CCND1 copy number alterations, all of which are key components of the MAP kinase pathway. Characterization of gene copy numbers was performed by quantitative PCR and, as an alternative method, fluorescence in situ hybridization was used to define the CCND1 amplification pattern at the single cell level. Samples with amplified CCND1 (32%) were further analyzed for copy number alterations for the TAOS1, FGF3, FGF19, FGF4 and EMS1 genes. Co-amplification of the CCND1 and TAOS1 was present in 15% of tumors and was more frequent in ulcerated lesions (P=0.017). Furthermore, 56% of primary melanomas had either BRAF or NRAS mutations, but these two mutations were not present in any of the lesions analyzed. Of these cases, 34% also had CCND1 amplification. There was a significant relationship between NRAS activating mutations and UV exposure (P=0.005). We did not find correlations between CCND1 gene amplification status and any of the patients' clinicopathological parameters. However, CCND1 amplification simultaneously with either BRAF or NRAS activation mutations was observed mainly in primary tumors with ulcerated surfaces (P=0.028). We assume that co-amplification of these candidate genes in the 11q13 region or CCND1 gene alterations along with either BRAF or NRAS mutations might be more important for prognosis than the presence of these alterations alone.


Assuntos
Cromossomos Humanos Par 11 , Amplificação de Genes , Dosagem de Genes , Genes ras , Estudos de Associação Genética , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Adulto , Cortactina/genética , Ciclina D1/genética , Feminino , Fator 3 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética/métodos , Humanos , Hibridização in Situ Fluorescente , Masculino , Melanoma/secundário , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Prognóstico , Reprodutibilidade dos Testes , Neoplasias Cutâneas/secundário , Adulto Jovem
17.
Elife ; 82019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418687

RESUMO

Antibiotic resistance typically induces a fitness cost that shapes the fate of antibiotic-resistant bacterial populations. However, the cost of resistance can be mitigated by compensatory mutations elsewhere in the genome, and therefore the loss of resistance may proceed too slowly to be of practical importance. We present our study on the efficacy and phenotypic impact of compensatory evolution in Escherichia coli strains carrying multiple resistance mutations. We have demonstrated that drug-resistance frequently declines within 480 generations during exposure to an antibiotic-free environment. The extent of resistance loss was found to be generally antibiotic-specific, driven by mutations that reduce both resistance level and fitness costs of antibiotic-resistance mutations. We conclude that phenotypic reversion to the antibiotic-sensitive state can be mediated by the acquisition of additional mutations, while maintaining the original resistance mutations. Our study indicates that restricting antimicrobial usage could be a useful policy, but for certain antibiotics only.


Assuntos
Adaptação Biológica , Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Genótipo , Fenótipo , Meios de Cultura/química , Escherichia coli/genética , Fatores de Tempo
18.
Nat Commun ; 10(1): 5731, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844052

RESUMO

Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains. Although generalizations about AMP resistance are common in the literature, we find that AMPs with different physicochemical properties and cellular targets vary considerably in their resistance determinants. As a consequence, cross-resistance is prevalent only between AMPs with similar modes of action. Finally, our screen reveals several genes that shape susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We anticipate that chemical-genetic approaches could inform future efforts to minimize cross-resistance between therapeutic and human host AMPs.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/imunologia , Evolução Molecular Direcionada , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Genes Bacterianos/genética , Genes Bacterianos/imunologia , Testes de Sensibilidade Microbiana , Mutação
19.
Nat Commun ; 10(1): 4538, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586049

RESUMO

Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Evolução Molecular Direcionada , Desenvolvimento de Medicamentos/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genoma Bacteriano/genética , Humanos , Metagenômica , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Mutação Puntual , Microbiologia do Solo
20.
Nat Microbiol ; 3(6): 718-731, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795541

RESUMO

Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/genética , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa