Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Rev Biol Trop ; 62(1): 373-83, 2014 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-24912366

RESUMO

The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme forests of Amacayacu National Park, and suggest reserve's size as a key element to ensure the conservation of plant diversity at both regional and local levels.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Árvores/classificação , Biomassa , Colômbia , Agricultura Florestal , Análise Espacial , Árvores/anatomia & histologia , Clima Tropical
2.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801913

RESUMO

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima Tropical
3.
Sci Rep ; 8(1): 1003, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343741

RESUMO

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Brasil , Chrysobalanaceae/fisiologia , Fabaceae/fisiologia , Humanos , Polygonaceae/fisiologia
4.
Sci Adv ; 1(10): e1500936, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702442

RESUMO

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

5.
Acta amaz ; Acta amaz;40(1): 179-188, mar. 2010. ilus, tab
Artigo em Espanhol | LILACS, VETINDEX | ID: lil-546973

RESUMO

El presente estudio se llevó a cabo en cinco hectáreas de una parcela permanente establecida en el Parque Nacional Amacayacu, Amazonia colombiana. En éste, se evaluó el efecto de la variación ambiental y la configuración espacial sobre los patrones florísticos de las especies arbóreas (DAP>10 cm) a escala local en un bosque de tierra firme. Se estudió la variación florística y ambiental en cuadrantes de 20x20 m. Adicionalmente, se consideraron diferentes categorías de abundancia (total, alta, media y baja). Se utilizó el Análisis de Correspondencia Linealizado y el Análisis de Correspondencia Canónica, seguido de una partición de la variación, para cuantificar la magnitud a la cual el ambiente y la limitación en dispersión determinan la variación florística. La fracción espacial, representando procesos de autocorrelación como la limitación en dispersión, se analizó mediante dos métodos: Asumiendo un polinomio de tercer grado y por el método de Coordenadas Principales de Matrices Vecinas (PCNM). La diversidad beta de la parcela fue baja. El PCNM aparece como el método de análisis más apropiado para estudios a esta escala. Las diferencias florísticas explicadas a lo largo de la parcela de 5-ha fueron principalmente asociadas con procesos biológicos como la limitación en dispersión. La mayor parte de la variación florística, no obstante, no fue explicada por las variables ambientales o espaciales consideradas. En conclusión, estos resultados sugieren que procesos aleatorios son determinantes esenciales de la variación espacial de las especies arbóreas a escala local en tierra firme en los bosques en el Parque Nacional Amacayacu.


This study was carried out in a 5-ha permanent plot established in the Amacayacu National Park, Colombian Amazonia. We assessed the extent at which floristic patterns of tree species were determined by either the environmental variation or the spatial configuration in tierra firme forests. Floristic and environmental variation was assessed on quadrants of 20x20 m. To run the analysis, four different categories of abundance (all, high, medium and low) were considered. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the patterns of species distribution in order to quantify the role played by both environmental filtering and dispersal limitation. The spatial template, which represents dispersal limitation, was evaluated in two different ways: using a third degree polynomial and using the Principal Coordinates of Neighbour Matrix (PCNM) method. Beta diversity was relatively low within the plot. PCNM appears as the most appropriate method to analyze the spatial template at this scale. The floristic differences explained along the 5-ha plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on tierra firme forests in the Amacayacu National Park.


Assuntos
Árvores/classificação , Flores/anatomia & histologia , Ecossistema Amazônico/análise , Biodiversidade , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa