RESUMO
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Contaminação de Alimentos , Microbiologia de Alimentos , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Microbiologia de Alimentos/métodos , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Bactérias/isolamento & purificaçãoRESUMO
The objective of this work was to find the optimal conditions by thermosonication-assisted extraction (TSAE) of the total acetogenin content (TAC) and yield from A. muricata seeds, assessing the effect of the temperature (40, 50, and 60 °C), sonication amplitude (80, 90, and 100%), and pulse-cycle (0.5, 0.7, and 1 s). In addition, optimal TSAE conditions of acetogenins (ACGs) were compared with extraction by ultrasound at 25 °C and the soxhlet method measuring TAC and antioxidant capacity. Moreover, solubility and identification of isolated ACGs were performed. Furthermore, the antifungal activity of ACGs crude extract and isolated ACGs was evaluated. Optimal TSAE conditions to extract the highest TAC (35.89 mg/g) and yield (3.6%) were 50 °C, 100% amplitude, and 0.5 s pulse-cycle. TSAE was 2.17-fold and 15.60-fold more effective than ultrasound at 25 °C and the Soxhlet method to extract ACGs with antioxidant capacity. Isolated ACGs were mostly soluble in acetone and methanol. Seven ACGs were identified, and pseudoannonacin was the most abundant. The inhibition of Candida albicans, Candida krusei, and Candida tropicalis was higher from isolated ACGs than crude extract. TSAE was effective to increase the yield in the ACGs extraction from A. muricata seeds and these ACGs have important antifungal activity.
Assuntos
Annona , Acetogeninas/farmacologia , Acetona , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Metanol , Extratos Vegetais/farmacologia , SementesRESUMO
Spray drying represents a viable alternative for the stabilization of juice and extract of a great diversity of plant in tropical zones, such as jackfruit from Nayarit, Mexico. The jackfruit powder allows physicochemical and microbiological stability for storage, transportation, and marketing. In addition, this allows expansion of consumption and use of these exotic tropical fruits. The aim of this work was to find the best enzymatic hydrolysis and spray drying treatment for obtaining jackfruit pulp and juice in powder without affecting its rheological and physicochemical properties. Jackfruit pulp was treated with three commercial enzymes and their mixtures, and the best treatment was then optimized by Response Surface Methodology. The jackfruit pulp and the hydrolyzed juice were spray dried using maltodextrin as a carrier agent. The best hydrolysis was obtained with Celluzyme® and Pectinex Ultra Pulp® and the optimal conditions were 1% of enzyme concentration, during 3 h at 37 °C (p = 0.92), that leads reducing sugar of 78.50 ± 1.93 mg mL-1 and viscosity of 7.94 ± 0.82 cps (94.7% reduction). The enzyme concentration is a direct function of reducing sugars content, while incubation time is an inverse function of viscosity. The spray drying treatment with the highest yield (74%) without affecting rheological and physicochemical properties compared to the fresh hydrolyzed juice was the treatment with 50% (TSS/weight) maltodextrin.
RESUMO
The effect of 20% high degree polymerized agave fructans (HDPAF) on the induction of the defense system in avocado fruits was investigated by transcriptomic analysis at 1, 24 and 72 h after treatment, and the effect of HDPAF on respiration rate and ethylene production was also analyzed. Transcriptomic profiling revealed 5425 differentially expressed genes (DEGs), 55 of which were involved in the pathways related to plant defense response to pathogens. Key genes were associated with phenylpropanoid biosynthesis, mitogen-activated protein signaling, plant hormone signaling, calcium ion signal decoding, and pathogenesis-related proteins. Dysregulated genes involved in ethylene biosynthesis were also identified, and the reduction in ethylene production by HDPAF was corroborated by gas chromatography, where three days of delayed peak production was observed compared to that in water-treated fruits. These results help to understand the mechanism of induction of the avocado defense system by applying HDPAF and support the application of HDPAF as an efficient postharvest treatment to extend the shelf life of the fruit.
Assuntos
Agave , Persea , Transcriptoma , Frutas/genética , Frutas/metabolismo , Persea/genética , Agave/genética , Frutanos/farmacologia , Frutanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.