Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(2): e0133122, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36700643

RESUMO

Dengue virus (DENV) is a Flavivirus that causes the most prevalent arthropod-borne viral disease. Clinical manifestation of DENV infection ranges from asymptomatic to severe symptoms that can lead to death. Unfortunately, no antiviral treatments against DENV are currently available. In order to identify novel DENV inhibitors, we screened a library of 1,604 chemically diversified fragment-based compounds using DENV reporter viruses that allowed quantification of viral replication in infected cells. Following a validation screening, the two best inhibitor candidates were N-phenylpyridine-3-carboxamide (NPP3C) and 6-acetyl-1H-indazole (6A1HI). The half maximal effective concentration of NPP3C and 6A1H1 against DENV were 7.1 µM and 6.5 µM, respectively. 6A1H1 decreased infectious DENV particle production up to 1,000-fold without any cytotoxicity at the used concentrations. While 6A1HI was DENV-specific, NPP3C also inhibited the replication of other flaviviruses such as West Nile virus and Zika virus. Structure-activity relationship (SAR) studies with 151 analogues revealed key structural elements of NPP3C and 6A1HI required for their antiviral activity. Time-of-drug-addition experiments identified a postentry step as a target of these compounds. Consistently, using a DENV subgenomic replicon, we demonstrated that these compounds specifically impede the viral RNA replication step and exhibit a high genetic barrier-to-resistance. In contrast, viral RNA translation and the de novo biogenesis of DENV replication organelles were not affected. Overall, our data unveil NPP3C and 6A1H1 as novel DENV inhibitors. The information revealed by our SAR studies will help chemically optimize NPP3C and 6A1H1 in order to improve their anti-flaviviral potency and to challenge them in in vivo models.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Vírus da Dengue/genética , Estágios do Ciclo de Vida , Replicação do RNA , RNA Viral/genética , Replicação Viral , Zika virus/genética , RNA Subgenômico/genética
2.
Mol Pharm ; 20(8): 4031-4040, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37421372

RESUMO

The free-state solution behaviors of small molecules profoundly affect their respective properties. It is becoming more obvious that compounds can adopt a three-phase equilibrium when placed in an aqueous solution, among soluble-lone molecule form, self-assembled aggregate form (nano-entities), and solid precipitate form. Recently, correlations have emerged between the existence of self-assemblies into drug nano-entities and unintended side effects. This report describes our pilot study involving a selection of drugs and dyes to explore if there may be a correlation between the existence of drug nano-entities and immune responses. We first implement practical strategies for detecting the drug self-assemblies using a combination of nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and confocal microscopy. We then used enzyme-linked immunosorbent assays (ELISA) to monitor the modulation of immune responses on two cellular models, murine macrophage and human neutrophils, upon exposure to the drugs and dyes. The results suggest that exposure to some aggregates correlated with an increase in IL-8 and TNF-α in these model systems. Given this pilot study, further correlations merit pursuing on a larger scale given the importance and potential impact of drug-induced immune-related side effects.


Assuntos
Corantes , Água , Animais , Humanos , Camundongos , Projetos Piloto , Água/química , Espectroscopia de Ressonância Magnética , Imunidade
3.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37770003

RESUMO

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Assuntos
Ácido Flufenâmico , Neoplasias , Humanos , Ácido Flufenâmico/farmacologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Hippo , Neoplasias/genética
4.
Arch Toxicol ; 96(9): 2559-2572, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35666269

RESUMO

The misuse of novichok agents in assassination attempts has been reported in the international media since 2018. These relatively new class of neurotoxic agents is claimed to be more toxic than the agents of the G and V series and so far, there is no report yet in literature about potential antidotes against them. To shed some light into this issue, we report here the design and synthesis of NTMGMP, a surrogate of A-242 and also the first surrogate of a novichok agent useful for experimental evaluation of antidotes. Furthermore, the efficiency of the current commercial oximes to reactivate NTMGMP-inhibited acetylcholinesterase (AChE) was evaluated. The Ellman test was used to confirm the complete inhibition of AChE, and to compare the subsequent rates of reactivation in vitro as well as to evaluate aging. In parallel, molecular docking, molecular dynamics and MM-PBSA studies were performed on a computational model of the human AChE (HssAChE)/NTMGMP complex to assess the reactivation performances of the commercial oximes in silico. Experimental and theoretical studies matched the exact hierarchy of efficiency and pointed to trimedoxime as the most promising commercial oxime for reactivation of AChE inhibited by A-242.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Acetilcolinesterase , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Agentes Neurotóxicos/toxicidade , Oximas/farmacologia
5.
Bioorg Med Chem Lett ; 29(6): 826-831, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30704813

RESUMO

DNA methylation is an epigenetic modification that is performed by DNA methyltransferases (DNMTs) and that leads to the transfer of a methyl group from S-adenosylmethionine (SAM) to the C5 position of cytosine. This transformation results in hypermethylation and silencing of genes such as tumor suppressor genes. Aberrant DNA methylation has been associated with the development of many diseases, including cancer. Inhibition of DNMTs promotes the demethylation and reactivation of epigenetically silenced genes. NSC 106084 and 14778 have been reported to inhibit DNMTs in the micromolar range. We report herein the synthesis of NSC 106084 and 14778 and the evaluation of their DNMT inhibitory activity. Our results indicate that while commercial NSC 14778 is moderately active against DNMT1, 3A/3L and 3B/3L, resynthesized NSC 14778 is inactive under our assay conditions. Resynthesized 106084 was also found to be inactive.


Assuntos
Acetatos/química , Compostos Benzidrílicos/química , Benzofenonas/química , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Salicilatos/química , Acetatos/síntese química , Compostos Benzidrílicos/síntese química , Benzofenonas/síntese química , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Salicilatos/síntese química
6.
Bioorg Med Chem Lett ; 27(2): 242-247, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913183

RESUMO

Central to drug discovery is the correct characterization of the primary structures of compounds. In general, medicinal chemists make great synthetic and characterization efforts to deliver the intended compounds. However, there are occasions which incorrect compounds are presented, such as those reported for Bosutinib and TIC10. This may be due to a variety of reasons such as uncontrolled reaction schemes, reliance on limited characterization techniques (LC-MS and/or 1D 1H NMR spectra), or even the lack of availability or knowledge of characterization strategies. Here, we present practical NMR approaches that support medicinal chemist workflows for addressing compound characterization issues and allow for reliable primary structure determinations. These strategies serve to differentiate between regioisomers and geometric isomers, distinguish between N- versus O-alkyl analogues, and identify rotamers and atropisomers. Overall, awareness and application of these available NMR methods (e.g. HMBC/HSQC, ROESY and VT experiments, to name only a few) should help practicing chemists to reveal chemical phenomena and avoid mis-assignment of the primary structures of compounds.


Assuntos
Compostos de Anilina/química , Nitrilas/química , Quinolinas/química , Química Farmacêutica , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
7.
Mini Rev Med Chem ; 24(12): 1148-1161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350844

RESUMO

The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.


Assuntos
Antídotos , Ricina , Ricina/antagonistas & inibidores , Ricina/química , Humanos , Antídotos/química , Antídotos/farmacologia , Substâncias para a Guerra Química/química , Animais
8.
Microbes Infect ; 26(7): 105297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199267

RESUMO

Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.


Assuntos
Antivirais , Descoberta de Drogas , Espectroscopia de Ressonância Magnética , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Descoberta de Drogas/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , SARS-CoV-2/efeitos dos fármacos , Cristalografia por Raios X , Hepacivirus/efeitos dos fármacos
9.
ACS Omega ; 9(11): 13217-13226, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524450

RESUMO

Recent advances in iterative neural network analyses (e.g., AlphaFold2 and RoseTTA fold) have been revolutionary for protein 3D structure prediction, especially for difficult-to-manipulate α-helical/ß-barrel integral membrane proteins. These model structures are calculated based on the coevolution of amino acids within the protein of interest and similarities to existing protein structures; the local effects of the membrane on folding and stability of the calculated model structures are not considered. We recently reported the discovery, 3D modeling, and characterization of 18-ß-stranded outer-membrane (OM) WzpX, WzpS, and WzpB ß-barrel secretion porins for the exopolysaccharide (EPS), major spore coat polysaccharide (MASC), and biosurfactant polysaccharide (BPS) pathways (respectively) in the Gram-negative social predatory bacterium Myxococcus xanthus DZ2. However, information was not obtained regarding the dynamic behavior of surface-gating WzpX/S/B loop domains or on potential treatments to inactivate these porins. Herein, we developed a molecular dynamics (MD) protocol to study the core stability and loop dynamism of neural network-based integral membrane protein structure models embedded in an asymmetric OM bilayer, using the M. xanthus WzpX, WzpS, and WzpB proteins as test candidates. This was accomplished through integration of the CHARMM-graphical user interface (GUI) and Molecular Operating Environment (MOE) workflows to allow for a rapid simulation system setup and facilitate data analysis. In addition to serving as a method of model structure validation, our molecular dynamics simulations revealed a minimal movement of extracellular WzpX/S/B loops in the absence of an external stimulus as well as druggable cavities between the loops. Virtual screening of a commercial fragment library against these cavities revealed putative fragment-binding hotspots on the cell-surface face of each ß-barrel, along with key interacting residues, and identified promising hits for the design of potential binders capable of plugging the ß-barrels and inhibiting polysaccharide secretion.

10.
Nat Commun ; 15(1): 4175, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755132

RESUMO

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Análise de Célula Única , Tuberculose , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise de Célula Única/métodos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Microfluídica/métodos , Fenótipo , Descoberta de Drogas/métodos , Sinergismo Farmacológico
11.
Bioorg Med Chem Lett ; 23(16): 4663-8, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23809849

RESUMO

A classic synthetic issue that remains unresolved is the reaction that involves the control of N- versus O-alkylation of ambident anions. This common chemical transformation is important for medicinal chemists, who require predictable and reliable protocols for the rapid synthesis of inhibitors. The uncertainty of whether the product(s) are N- and/or O-alkylated is common and can be costly if undetermined. Herein, we report an NMR-based strategy that focuses on distinguishing inhibitors and intermediates that are N- or O-alkylated. The NMR strategy involves three independent and complementary methods. However, any combination of two of the methods can be reliable if the third were compromised due to resonance overlap or other issues. The timely nature of these methods (HSQC/HMQC, HMBC. ROESY, and (13)C shift predictions) allows for contemporaneous determination of regioselective alkylation as needed during the optimization of synthetic routes.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Oxigênio/química , Alquilação , Cristalografia por Raios X , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Estrutura Molecular
12.
Bioorg Med Chem Lett ; 23(9): 2775-80, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23511023

RESUMO

Screening of our sample collection led to the identification of a set of benzofurano[3,2-d]pyrimidine-2-one hits acting as nucleotide-competing HIV-1 reverse transcriptase inhibitiors (NcRTI). Significant improvement in antiviral potency was achieved when substituents were introduced at positions N1, C4, C7 and C8 on the benzofuranopyrimidone scaffold. The series was optimized from low micromolar enzymatic activity against HIV-1 RT and no antiviral activity to low nanomolar antiviral potency. Further profiling of inhibitor 30 showed promising overall in vitro properties and also demonstrated that its potency was maintained against viruses resistant to the other major classes of HIV-1 RT inhibitors.


Assuntos
Benzofuranos/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Nucleotídeos/química , Pirimidinonas/química , Inibidores da Transcriptase Reversa/química , Animais , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Microssomos Hepáticos/metabolismo , Nucleotídeos/metabolismo , Ligação Proteica , Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Ratos , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade
13.
Chem Biol Interact ; 382: 110622, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442286

RESUMO

The A-series is the most recent generation of chemical warfare nerve agents (CWA) which act directly on the inhibition of the human acetylcholinesterase (HssAChE) enzyme. These compounds lack accurate experimental data on their physicochemical properties, and there is no evidence that traditional antidotes effectively reactivate HssAChE inhibited by them. In the search for potential antidotes, we employed virtual screening, molecular docking, and molecular dynamics (MD) simulations for the theoretical assessment of the performance of a library of Mannich phenols as potential reactivators of HssAChE inhibited by the Novichok agents A-230, A-232, and A-234, in comparison with the commercial oximes pralidoxime (2-PAM), asoxime (HI-6), trimedoxime (TMB-4), and obidoxime. Following the near-attack conformation (NAC) approach, our results suggest that the compounds assessed would face difficulties in triggering the proposed nucleophilic in-line displacement mechanism. Despite this, it was observed that certain Mannich phenols presented similar or superior results to those obtained by reference oximes against A-232 and A-234 model, suggesting that these compounds can adopt more favourable conformations. Additional binding energy calculations confirmed the stability of the model/ligands complexes and the reactivating potential observed in the molecular docking and MD studies. Our findings indicate that the Mannich phenols could be alternative antidotes and that their efficacy should be evaluated experimentally against the A-series CWA.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Oximas/farmacologia , Oximas/química , Trimedoxima/química , Trimedoxima/farmacologia , Substâncias para a Guerra Química/farmacologia , Compostos de Piridínio/farmacologia
14.
ACS Omega ; 8(29): 25832-25838, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521620

RESUMO

Macrocyclic peptidomimetics have been seriously contributing to our arsenal of drugs to combat diseases. The search for nature's discoveries led us to mortiamides A-D (found in a novel fungus from Northern Canada), which is a family of cyclic peptides that clearly have demonstrated impressive pharmaceutical potential. This prompted us to learn more about their solution-state properties as these are central for binding to target molecules. Here, we secured and isolated mortiamide D, and then acquired high-resolution nuclear magnetic resonance (NMR) data to learn more about its structure and dynamics attributes. Sets of two-dimensional NMR experiments provided atomic-level (through-bond and through-space) data to confirm the primary structure, and NMR-driven molecular dynamics (MD) simulations suggested that more than one predominant three-dimensional (3D) structure exist in solution. Further steps of MD simulations are consistent with the finding that the backbones of mortiamides A-C also have at least two prominent macrocyclic shapes, but the side-chain structures and dynamics differed significantly. Knowledge of these solution properties can be exploited for drug design and discovery.

15.
J Biomol Struct Dyn ; 41(22): 13348-13367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744449

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 virus has created a global damage and has exposed the vulnerable side of scientific research towards novel diseases. The intensity of the pandemic is huge, with mortality rates of more than 6 million people worldwide in a span of 2 years. Considering the gravity of the situation, scientists all across the world are continuously attempting to create successful therapeutic solutions to combat the virus. Various vaccination strategies are being devised to ensure effective immunization against SARS-CoV-2 infection. SARS-CoV-2 spreads very rapidly, and the infection rate is remarkably high than other respiratory tract viruses. The viral entry and recognition of the host cell is facilitated by S protein of the virus. N protein along with NSP3 is majorly responsible for viral genome assembly and NSP12 performs polymerase activity for RNA synthesis. In this study, we have designed a multi-epitope, chimeric vaccine considering the two structural (S and N protein) and two non-structural proteins (NSP3 and NSP12) of SARS-CoV-2 virus. The aim is to induce immune response by generating antibodies against these proteins to target the viral entry and viral replication in the host cell. In this study, computational tools were used, and the reliability of the vaccine was verified using molecular docking, molecular dynamics simulation and immune simulation studies in silico. These studies demonstrate that the vaccine designed shows steady interaction with Toll like receptors with good stability and will be effective in inducing a strong and specific immune response in the body.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/metabolismo , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Simulação de Acoplamento Molecular , Pandemias/prevenção & controle , Reprodutibilidade dos Testes , Vacinas Virais/química , Epitopos de Linfócito B
16.
Artigo em Inglês | MEDLINE | ID: mdl-37479961

RESUMO

Bolivian hemorrhagic fever (BHF) caused by Machupo virus (MACV) is a New World arenavirus having a reported mortality rate of 25-35%. The BHF starts with fever, followed by headache, and nausea which rapidly progresses to severe hemorrhagic phase within 7 days of disease onset. One of the key promoters for MACV viral entry into the cell followed by viral propagation is performed by the viral glycoprotein (GPC). GPC is post-transcriptionally cleaved into GP1, GP2 and a signal peptide. These proteins all take part in the viral infection in host body. Therefore, GPC protein is an ideal target for developing therapeutics against MACV infection. In this study, GPC protein was considered to design a multi-epitope, multivalent vaccine containing antigenic and immunogenic CTL and HTL epitopes. Different structural validations and physicochemical properties were analysed to validate the vaccine. Docking and molecular dynamics simulations were conducted to understand the interactions of the vaccine with various immune receptors. Finally, the vaccine was codon optimised in silico and along with which immune simulation studies was performed in order to evaluate the vaccine's effectiveness in triggering an efficacious immune response against MACV.

17.
J Med Chem ; 66(19): 13416-13427, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37732695

RESUMO

Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an "undruggable" protein target, HRas.


Assuntos
Descoberta de Drogas , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
18.
J Mol Model ; 29(6): 183, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212923

RESUMO

CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS: The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Produtos Biológicos/farmacologia , Simulação de Dinâmica Molecular , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Antivirais/farmacologia
19.
ACS Omega ; 7(15): 13155-13163, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474811

RESUMO

Fluorine (19F) NMR strategies are increasingly being employed for evaluating ligand binding to macromolecules, among many other uses. 19F NMR offers many advantages as a result of its sensitive spin 1/2 nucleus, 100% natural abundance, and wide chemical shift range. Moreover, because of its absence from biological samples, one can directly monitor ligand binding without background interference from the macromolecule. Therefore, all these aforementioned features make it an attractive approach for screening compounds. However, the detection of ligand binding, especially those with weak affinities, can require interpretations of minor changes in chemical shifts. Thus, chemical shift referencing is critical for accurate measurements and interpretations. Unfortunately, one cannot rely on spectrometer indirect referencing alone, and internal chemical references have sample-dependent issues. Here, we evaluated 10 potential candidate compounds that could serve as 19F NMR chemical references. Multiple factors were systematically evaluated for each candidate to monitor the suitability for 19F NMR screening purposes. These factors include aqueous solubility, buffer compatibility, salt compatibility, aqueous stability, tolerability to pH changes, temperature changes, and compound pooling. It was concluded that there was no ideal candidate, but five compounds had properties that met the screening requirements.

20.
ACS Omega ; 7(36): 32805-32815, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120038

RESUMO

Recently, we reported a library of 82 compounds, selected from different databanks through virtual screening and docking studies, and pointed to 6 among them as potential repurposed dual binders to both the catalytic site and the secondary binding pockets of subunit A of ricin (RTA). Here, we report additional molecular modeling studies of an extended list of compounds from the original library. Rounds of flexible docking followed by molecular dynamics simulations and further rounds of MM-PBSA calculations using a more robust protocol, enabled a better investigation of the interactions of these compounds inside RTA, the elucidation of their dynamical behaviors, and updating the list of the most important residues for the ligand binding. Four compounds were pointed as potential repurposed ricin inhibitors that are worth being experimentally investigated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa