Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111984

RESUMO

Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.

2.
Polymers (Basel) ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514508

RESUMO

Structural damping composites exhibit considerable potential in aerospace and other fields due to their excellent damping and vibration reduction performance, as well as their structural carrying capacity. However, conventional structural damping composite materials generally do not combine excellent mechanical and damping properties at the same time, which makes it difficult for them to meet the practical demand in engineering. In this paper, polyetherimide (PEI) non-woven fabric interlayer materials loaded with quantified polydopamine (PDA) and carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to prepare carbon fiber-reinforced bismaleimide composites through the co-curing process. The mechanical and damping properties of the composites were systematically studied. The results demonstrate that PEI non-woven fabric interlayers loaded with PDA and MWCNTs-COOH can synchronously improve the mechanical and damping properties of the co-cured composites. The incorporation of carbon nanotubes and polydopamine during the co-curing process synergistically improves the flexural strength, flexural modulus, interlaminar shear strength, and impact fracture toughness of the composites. Most importantly, damping properties show an increase of 45.0% in the loss factor of the co-cured composites. Moreover, the reinforcement mechanism was investigated using the optical microscopy and scanning electron microscopy, which indicated that the PEI interlayers loaded with carbon nanotubes and polydopamine form a rich resin area between the layers of the composites.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa