Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 15: 387, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24885025

RESUMO

BACKGROUND: Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region. RESULTS: We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion. CONCLUSIONS: Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.


Assuntos
Cromossomos Humanos Par 1 , Genoma Humano , Evolução Biológica , Proteínas de Transporte/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Ligação Genética , Haploidia , Humanos , Estrutura Terciária de Proteína/genética , Duplicações Segmentares Genômicas
2.
Nat Ecol Evol ; 3(8): 1241-1252, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358948

RESUMO

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.


Assuntos
Sistema Cardiovascular , Lagartos , Aclimatação , Animais , Cromossomos
3.
Genome Biol ; 18(1): 230, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29195502

RESUMO

We present a new method, OMSV, for accurately and comprehensively identifying structural variations (SVs) from optical maps. OMSV detects both homozygous and heterozygous SVs, SVs of various types and sizes, and SVs with or without creating or destroying restriction sites. We show that OMSV has high sensitivity and specificity, with clear performance gains over the latest method. Applying OMSV to a human cell line, we identified hundreds of SVs >2 kbp, with 68 % of them missed by sequencing-based callers. Independent experimental validation confirmed the high accuracy of these SVs. The OMSV software is available at http://yiplab.cse.cuhk.edu.hk/omsv/ .


Assuntos
Variação Estrutural do Genoma , Genômica/métodos , Software , Biologia Computacional/métodos , Simulação por Computador , Genoma Humano , Humanos
4.
Genetics ; 202(1): 351-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26510793

RESUMO

Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation.


Assuntos
Mapeamento Cromossômico , Variação Estrutural do Genoma , Análise em Microsséries/métodos , Linhagem Celular , Genoma Humano , Humanos
5.
G3 (Bethesda) ; 5(11): 2513-22, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26401030

RESUMO

Atlantic salmon and rainbow trout, like other members of the subfamily Salmoninae, are gonochoristic with male heterogamety. The finding that sex-linked genetic markers varied between species suggested that the sex-determining gene differs among salmonid species, or that there is one sex-determining gene that has the capacity to move around the genome. The discovery of sdY, the sex-determining gene in rainbow trout, and its presence in many male salmonids gave support to the latter. Additional evidence for a salmonid-specific, sex-determining jumping gene came from the mapping of the sex-determining locus to three different chromosomes in Tasmanian male Atlantic salmon lineages. To characterize the sex-determining region, we isolated three sdY containing BACs from an Atlantic salmon male library. Sequencing of these BACs yielded two contigs, one of which contained the sdY gene. Sequence analysis of the borders of male-specific and female/male common regions revealed highly repetitive sequences associated with mobile elements, which may allow an sdY cassette to jump around the genome. FISH analysis using a BAC or a plasmid containing the sdY gene showed that the sdY gene did indeed localize to the chromosomes where SEX had been mapped in different Tasmanian Atlantic salmon families. Moreover, the plasmid sdY gene probe hybridized primarily to one of the sex chromosomes as would be expected of a male-specific gene. Our results suggest that a common salmonid sex-determining gene (sdY) can move between three specific loci on chromosomes 2, 3, and 6, giving the impression that there are multiple SEX loci both within and between salmonid species.


Assuntos
Genes sry , Instabilidade Genômica , Salmo salar/genética , Animais , Cromossomos/genética
6.
Gene ; 504(2): 253-61, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22575613

RESUMO

Whole genome duplications (WGDs) are considered to have been a driving force in the generation of evolutionary diversity that is characteristic of higher eukaryotes. The ancestor of salmonids underwent two additional WGDs compared to mammals, one (3R) at the base of the teleost radiation and another (4R) in the common ancestor of extant salmonids. We have chosen the fatty acid binding protein (fabp) gene family as a model to study the fate of duplicated genes in teleosts following WGDs. As previously described for zebrafish, we identified two copies (fabp7a and fabp7b) of the brain-type fabp gene in several fish including rainbow smelt, but there was only a single transcript in northern pike, the closest relative of the salmonids, and two rather than the expected four fabp7 genes in Atlantic salmon, rainbow trout and grayling. A phylogenetic analysis revealed that a loss of the fabp7a gene occurred in the common ancestor of the northern pike and salmonids after it had diverged from the rainbow smelt, and that the 4R WGD then gave rise to the fabp7bI and fabp7bII observed in salmonids. This is supported by genetic mapping that placed the Atlantic salmon duplicated fabp7b genes on homeologous chromosomes. There was no evidence of neo-functionalization in the salmonid fabp7bI and fabp7bII genes based on dN/dS ratios and an examination of amino acid substitutions. Atlantic salmon fabp7bI and fabp7bII genes are both expressed broadly like fabp7b expression in northern pike. However, only Atlantic salmon fabp7bII, like its counterpart in northern pike and zebrafish, was expressed in the liver. A comparison of ~2000bp upstream of Atlantic salmon fabp7b gene duplicates revealed an insertion of 62bp in fabp7bI relative to fabp7bII. The presence of predicted transcription factor binding sites in this insertion sequence may explain the differential expression of the fabp7b gene duplicates in Atlantic salmon liver.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Duplicação Gênica , Genoma , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Ácido Graxo/química , Expressão Gênica , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Sequências Reguladoras de Ácido Nucleico , Salmão , Homologia de Sequência de Aminoácidos
7.
Mar Genomics ; 2(3-4): 193-200, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21798188

RESUMO

Gene and genome duplications are considered to be driving forces of evolution. The relatively recent genome duplication in the common ancestor of salmonids makes this group of fish an excellent system for studying the re-diploidization process and the fates of duplicate genes. We characterized the structure and genome organization of the intestinal fatty acid binding protein (fabp2) genes in Atlantic salmon as a means of understanding the evolutionary fates of members of this protein family in teleosts. A survey of EST databases identified three unique salmonid fabp2 transcripts (fabp2aI, fabp2aII and fabp2b) compared to one transcript in zebrafish. We screened the CHORI-214 Atlantic salmon BAC library and identified BACs containing each of the three fabp2 genes. Physical mapping, genetic mapping and fluorescence in situ hybridization of Atlantic salmon chromosomes revealed that Atlantic salmon fabp2aI, fabp2aII and fabp2b correspond to separate genetic loci that reside on different chromosomes. Comparative genomic analyses indicated that these genes are related to one another by two genome duplications and a gene loss. The first genome duplication occurred in the common ancestor of all teleosts, giving rise to fabp2a and fabp2b, and the second in the common ancestor of salmonids, producing fabp2aI, fabp2aII, fabp2bI and fabp2bII. A subsequent loss of fabp2bI or fabp2bII gave the complement of fabp2 genes seen in Atlantic salmon today. There is also evidence for independent losses of fabp2b genes in zebrafish and tetraodon. Although there is no evidence for partitioning of tissue expression of fabp2 genes (i.e., sub-functionalization) in Atlantic salmon, the pattern of amino acid substitutions in Atlantic salmon and rainbow trout fabp2aI and fabp2aII suggests that neo-functionalization is occurring.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa