Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 99(10): 4343-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25661998

RESUMO

Lactobacillus fermentum CECT 5716, isolated from human milk, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, some phenotypic properties of L. fermentum CECT 5716 were evaluated, and the genetic basis for the obtained results was searched for in the strain genome. L. fermentum CECT 5716 does not contain plasmids and showed neither bacteriocin nor biogenic amine biosynthesis ability but was able to produce organic acids, glutathione, riboflavin, and folates and to moderately stimulate the maturation of mouse dendritic cells. No prophages could be induced, and the strain was sensitive to all antibiotics proposed by European Food Safety Authority (EFSA) standards, while no transmissible genes potentially involved in antibiotic resistance were detected in its genome. Globally, there was an agreement between the phenotype properties of L. fermentum CECT 5716 and the genetic information contained in its genome.


Assuntos
Genoma Bacteriano , Limosilactobacillus fermentum/isolamento & purificação , Leite Humano/microbiologia , Probióticos/química , Animais , Antibacterianos/farmacologia , Feminino , Ácido Fólico/metabolismo , Glutationa/metabolismo , Humanos , Limosilactobacillus fermentum/efeitos dos fármacos , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Plasmídeos/metabolismo , Probióticos/classificação , Probióticos/isolamento & purificação , Riboflavina/metabolismo
2.
Food Res Int ; 89(Pt 1): 488-494, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28460943

RESUMO

The lactic acid bacteria (LAB) microbiota of quinoa grains (QG) and spontaneous sourdough (QSS) was evaluated. Different strains of Lactobacillus (L.) plantarum (7), L. rhamnosus (5), L. sakei (1), Pediococcus (Ped.) pentosaceus (9), Leuconostoc (Leuc.) mesenteroides (1), Enterococcus (E.) casseliflavus (2), E. mundtii (3), E. hirae (1), E. gallinarum (12), Enterococcus sp. (1), and E. hermanniensis (2) were isolated, identified and characterized. Only four strains isolated from QSS and eight strains isolated from QG showed amylolytic activity. L. plantarum CRL 1973 and CRL 1970, L. rhamnosus CRL 1972 and L. sakei CRL 1978 produced elevated concentrations of folate with strain CRL 1973 producing the highest concentration (143±6ng/ml). L. rhamnosus, isolated from QSS, was the LAB species that produced the most elevated concentrations of total riboflavin (>270ng/ml) with strain CRL 1963 producing the highest amounts (360±10ng/ml). Phytase activity, evaluated in forty-four LAB strains from quinoa, was predominantly detected in L. rhamnosus and Enterococci strains with the highest activities observed in E. mundtii CRL 2007 (957±25U/ml) followed by E. casseliflavus CRL 1988 (684±38U/ml), Leuc. mesenteroides CRL 2012 (617±38U/ml) and L. rhamnosus CRL 1983 (606±79U/ml). In conclusion, this study shows that a diverse LAB microbiota is present in quinoa with important properties; these microorganisms could be used as potential starter cultures to increase the nutritional and functional properties of Andean grains based foods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa