Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr ; 271: 114042, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38570031

RESUMO

OBJECTIVE: The objective of this study was to examine the association of cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, with late-onset sepsis for extremely preterm infants (<29 weeks of gestational age) on vs off invasive mechanical ventilation. STUDY DESIGN: This is a retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in 5 level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean gestational age: 26.4 weeks, SD 1.71). Monitoring data were available and analyzed for 719 infants (47 512 patient-days); of whom, 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72 hours after birth and ≥5-day antibiotics). RESULTS: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer events with oxygen saturation <80% (IH80) and more bradycardia events before sepsis. IH events were associated with higher sepsis risk but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model including postmenstrual age, cardiorespiratory variables (apnea, periodic breathing, IH80, and bradycardia), and ventilator status predicted sepsis with an area under the receiver operator characteristic curve of 0.783. CONCLUSION: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.


Assuntos
Apneia , Bradicardia , Hipóxia , Lactente Extremamente Prematuro , Sepse , Humanos , Bradicardia/epidemiologia , Bradicardia/etiologia , Apneia/epidemiologia , Estudos Retrospectivos , Recém-Nascido , Hipóxia/complicações , Feminino , Masculino , Sepse/complicações , Sepse/epidemiologia , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/diagnóstico , Respiração Artificial , Unidades de Terapia Intensiva Neonatal , Idade Gestacional
2.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343830

RESUMO

Objective: Highly comparative time series analysis (HCTSA) is a novel approach involving massive feature extraction using publicly available code from many disciplines. The Prematurity-Related Ventilatory Control (Pre-Vent) observational multicenter prospective study collected bedside monitor data from > 700 extremely preterm infants to identify physiologic features that predict respiratory outcomes. We calculated a subset of 33 HCTSA features on > 7M 10-minute windows of oxygen saturation (SPO2) and heart rate (HR) from the Pre-Vent cohort to quantify predictive performance. This subset included representatives previously identified using unsupervised clustering on > 3500 HCTSA algorithms. Performance of each feature was measured by individual area under the receiver operating curve (AUC) at various days of life and binary respiratory outcomes. These were compared to optimal PreVent physiologic predictor IH90 DPE, the duration per event of intermittent hypoxemia events with threshold of 90%. Main Results: The top HCTSA features were from a cluster of algorithms associated with the autocorrelation of SPO2 time series and identified low frequency patterns of desaturation as high risk. These features had comparable performance to and were highly correlated with IH90_DPE but perhaps measure the physiologic status of an infant in a more robust way that warrants further investigation. The top HR HCTSA features were symbolic transformation measures that had previously been identified as strong predictors of neonatal mortality. HR metrics were only important predictors at early days of life which was likely due to the larger proportion of infants whose outcome was death by any cause. A simple HCTSA model using 3 top features outperformed IH90_DPE at day of life 7 (.778 versus .729) but was essentially equivalent at day of life 28 (.849 versus .850). These results validated the utility of a representative HCTSA approach but also provides additional evidence supporting IH90_DPE as an optimal predictor of respiratory outcomes.

3.
Physiol Meas ; 45(5)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38772400

RESUMO

Objective.Highly comparative time series analysis (HCTSA) is a novel approach involving massive feature extraction using publicly available code from many disciplines. The Prematurity-Related Ventilatory Control (Pre-Vent) observational multicenter prospective study collected bedside monitor data from>700extremely preterm infants to identify physiologic features that predict respiratory outcomes.Approach. We calculated a subset of 33 HCTSA features on>7 M 10 min windows of oxygen saturation (SPO2) and heart rate (HR) from the Pre-Vent cohort to quantify predictive performance. This subset included representatives previously identified using unsupervised clustering on>3500HCTSA algorithms. We hypothesized that the best HCTSA algorithms would compare favorably to optimal PreVent physiologic predictor IH90_DPE (duration per event of intermittent hypoxemia events below 90%).Main Results.The top HCTSA features were from a cluster of algorithms associated with the autocorrelation of SPO2 time series and identified low frequency patterns of desaturation as high risk. These features had comparable performance to and were highly correlated with IH90_DPE but perhaps measure the physiologic status of an infant in a more robust way that warrants further investigation. The top HR HCTSA features were symbolic transformation measures that had previously been identified as strong predictors of neonatal mortality. HR metrics were only important predictors at early days of life which was likely due to the larger proportion of infants whose outcome was death by any cause. A simple HCTSA model using 3 top features outperformed IH90_DPE at day of life 7 (.778 versus .729) but was essentially equivalent at day of life 28 (.849 versus .850).Significance. These results validated the utility of a representative HCTSA approach but also provides additional evidence supporting IH90_DPE as an optimal predictor of respiratory outcomes.


Assuntos
Frequência Cardíaca , Lactente Extremamente Prematuro , Saturação de Oxigênio , Humanos , Frequência Cardíaca/fisiologia , Recém-Nascido , Saturação de Oxigênio/fisiologia , Lactente Extremamente Prematuro/fisiologia , Fatores de Tempo , Algoritmos , Respiração , Feminino , Estudos Prospectivos
4.
medRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38343825

RESUMO

Objectives: Detection of changes in cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, may facilitate earlier detection of sepsis. Our objective was to examine the association of cardiorespiratory events with late-onset sepsis for extremely preterm infants (<29 weeks' gestational age (GA)) on versus off invasive mechanical ventilation. Study Design: Retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in five level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean GA 26.4w, SD 1.71). Monitoring data were available and analyzed for 719 infants (47,512 patient-days), of whom 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72h after birth and ≥5d antibiotics). Results: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer IH80 events and more bradycardia events before sepsis. IH events were associated with higher sepsis risk, but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model predicted sepsis with an AUC of 0.783. Conclusion: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa